Ричард Фейнман - 6a. Электродинамика
Начать, по-видимому, нужно с движения частицы в однородном электрическом поле. Движение при небольших скоростях не представляет особенного интереса — это просто равномерно ускоренное движение в направлении поля. А вот когда частица, набрав достаточно энергии, превращается в релятивистскую, движение ее становится более сложным. Решение для этого случая я оставляю вам — потрудитесь и отыщите его сами.
Мы же рассмотрим движение в однородном магнитном поле, когда электрического поля нет. Эту задачу мы уже решали. Одним из решений было движение частиц по окружности. Магнитная сила
qv X В всегда действует под прямым углом к направлению движения, так что производная dp/dt перпендикулярна р и равна по величине vp/R, где R — радиус окружности, т. е.
Фиг. 29.1. Движение частицы в однородном магнитном поле.
Таким образом, радиус круговой орбиты равен
(29.1)
Это одно из возможных движений. Если движущаяся частица имеет только одну составляющую в направлении поля, то она не изменяется, ибо у магнитной силы отсутствует компонента в направлении поля. Общее же движение частицы в однородном магнитном поле — это движение с постоянной скоростью в направлении В и круговое движение под прямым углом к В, т. е. движение по цилиндрической спирали (фиг. 29.1). Радиус спирали определяется равенством (29.1) с заменой р на р┴ — компоненту импульса, перпендикулярную к направлению поля.
§ 2. Анализатор импульсов
Однородное магнитное поле часто применяется в «анализаторе», или «спектрометре импульсов» высокоэнергетических частиц. Предположим, что в точке А (фиг. 29.2, а) в однородное магнитное поле влетают заряженные частицы, причем магнитное поле перпендикулярно плоскости рисунка. При этом каждая частица будет лететь по круговой орбите, радиус которой пропорционален ее импульсу. Если все частицы влетают в поле перпендикулярно его краю, то они покидают его на расстоянии х от точки А, пропорциональном их импульсу р. Помещенный в некоторой точке С счетчик будет регистрировать только такие частицы, импульс которых находится где-то в интервале Dp величин p=qBx/2.
Фиг. 29.2. 180-градусный спектрометр импульсов с однородным магнитным полем.
а — траектории частиц с разными импульсами; 6 — траектории частиц, влетающих под равными углами. Магнитное поле направлено перпендикулярно плоскости рисунка.
Нет необходимости, разумеется, чтобы перед регистрацией частица поворачивалась на 180°, но такой «180-градусный спектрометр» обладает особым свойством: для него совсем необязательно, чтобы частицы входили под прямым углом к краю поля. На фиг. 29.2, б показаны траектории трех частиц с одинаковым импульсом, но входящих в поле под различными углами. Вы видите, что траектории у них разные, но все они покидают поле очень близко к точке С. В подобных случаях мы говорим о «фокусировке». Преимущество такого способа фокусировки в том, что она позволяет допускать в точку А частицы, летящие под большими углами, хотя обычно, как видно из рисунка, углы эти в какой-то степени ограничены. Большое угловое разрешение обычно означает регистрацию за данный промежуток времени большего числа частиц и сокращения, следовательно, времени измерения.
Изменяя магнитное поле, передвигая счетчик вдоль оси х или же покрывая с помощью многих счетчиков целую область по оси х, можно измерить «спектр» падающего пучка [«спектр» импульсов f(p) означает, что число частиц с импульсами в интервале между р и (p+dp) равно f(p)dp]. Такие измерения проводятся, например, при определении распределения по энергиям в b-распаде различных ядер.
Имеется еще много других типов импульсных спектрометров, но я расскажу вам только об одном из них, характерном особенно большим разрешением по пространственному углу. В основе его лежат винтовые орбиты в однородном поле, как это показано на фиг. 29.1. Представьте себе цилиндрическую систему координат r, q, z, причем ось z выбрана по направлению магнитного поля. Если частица испускается из начала координат под углом
Фиг. 29.3. Спектрометр с аксиальным полем.
а к направлению оси z, то она будет двигаться по спиральной линии, описываемой выражением
входящие туда параметры а, b и k нетрудно выразить через r, a и магнитное ноле В. Если для данного импульса, но разных начальных углов отложить расстояние r от оси как функцию z, то мы получим кривые, подобные сплошным кривым на фиг. 29.3. (Вы помните — ведь это своего рода проекция винтовой траектории.) Когда угол между осью и начальным направлением велик, максимальное значение r тоже будет большим, а продольная скорость при этом уменьшается, так что выходящие под различными углами траектории стремятся собраться в своего рода фокус (точка А на рисунке). Если на расстоянии А поставить узкое кольцевое отверстие, то частицы, летящие в некоторой области углов, могут пройти через отверстие и достигнуть оси, где для их регистрации мы приготовим протяженный детектор D. Частицы, вылетающие из начала координат под тем же самым углом, но с большим импульсом, летят по пути, обозначенному нами пунктирной линией, и не могут пройти через отверстие А. Итак, прибор выбирает небольшой интервал импульса. Преимущество такого спектрометра по сравнению с описанным ранее состоит в том, что отверстия А и А' можно сделать кольцевыми, так что могут быть зарегистрированы частицы в довольно большом телесном угле. Это преимущество особенно важно для слабых источников и при очень точных измерениях, когда необходимо использовать возможно большую долю испущенных источником частиц.
Фиг. 29.4. Внутри эллипсоидальной катушки, ток которой на любом интервале оси Dx одинаков, возникает однородное поле.
Но за это преимущество приходится расплачиваться, ибо метод требует большого объема однородного магнитного поля, и он практически пригоден только для частиц с небольшой энергией. Если вы помните, один из способов получения однородного поля — это намотать провод на сферу так, чтобы поверхностная плотность тока была пропорциональна синусу угла. Вы можете доказать, что то же самое справедливо и для эллипсоида вращения. Поэтому очень часто такой спектрометр изготовляют, просто наматывая эллипсоидальные витки на деревянный или алюминиевый каркас. Единственное, что при этом требуется,— это чтобы ток на любом интервале оси Ах (фиг. 29.4) был одним и тем же.
§ 3. Электростатическая линза
Фокусировка частицы имеет множество применений. Например, в телевизионной трубке электроны, вылетающие из катода, фокусируются на экране в маленькое пятнышко. Делается это для того, чтобы отобрать электроны одинаковой энергии, но летящие под различными углами, и собрать их в небольшую точку. Эта задача напоминает фокусировку света с помощью линз, поэтому устройства, которые выполняют такие функции, тоже называются линзами.
В качестве примера электронной линзы здесь приведена фиг. 29.5. Это «электростатическая» линза, действие которой зависит от электрического поля между двумя соседними электродами. Работу ее можно понять, проследив за тем, что она делает с входящим слева параллельным пучком частиц. Попав в область а, электроны испытывают действие силы с боковой компонентой, которая прижимает их к оси. В области b электроны, казалось бы, должны получить равный по величине, но противоположный по знаку импульс, однако это не так. К тому времени, когда они достигнут области b, энергия их несколько увеличится, и поэтому на прохождение области b они затратят меньше времени.
Фиг. 29.5. Электростатическая линза. Показаны силовые линии, т. е. линии вектора qE.
Силы-то те же самые, но время их действия меньше, поэтому и импульс будет меньше. А полный импульс силы при прохождении областей а и b направлен к оси, так что в результате электроны стягиваются к одной общей точке. Покидая область высокого напряжения, частицы получают добавочный толчок по направлению к оси. В области с сила направлена от оси, а в области d — к оси, но во второй области частица остается дольше, так что снова полный импульс направлен к оси. Для небольших расстояний от оси полный импульс силы на протяжении всей линзы пропорционален расстоянию от оси (понимаете почему?), и это как раз основное условие, необходимое для обеспечения фокусировки линз такого типа.