KnigaRead.com/

Ричард Фейнман - 8. Квантовая механика I

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "8. Квантовая механика I" бесплатно, без регистрации.
Перейти на страницу:

Кстати, следует отметить, что матрица <i|U(t2, t1|j> могла бы дать гораздо больше всяких деталей, чем нам обычно нужно. Теоретик высокого класса, работающий в физике высоких энергий, рассматривает примерно такие проблемы (потому что именно так обычно ставятся эксперименты): он начинает с двух частиц, скажем с протона и протона, налетающих друг на друга из бесконечности. (В лаборатории обычно одна частица покоится, другая же вылетает из ускорителя, кото­рый по атомным масштабам пребывает в бесконечности.) Они сталкиваются, и в итоге появляются, скажем, два К -мезона, шесть p-мезонов и два нейтрона с определенными импульсами в определенных направлениях. Какова амплитуда того, что это случится? Математика здесь выглядит так. Состояние j отмечает спины и импульсы сближающихся частиц. а c — это сведения о том, что получается в конце. К примеру, с какой амп­литудой вы получите шесть мезонов, идущих в таких-то и та­ких-то направлениях, а два нейтрона, вылетающих вот в этих направлениях и со спинами, торчащими так-то и так-то. Ины­ми словами, c отмечается заданием всех импульсов, спинов и т. п. конечных продуктов. И вот работа теоретика состоит в том, чтобы подсчитать амплитуду (6.27). Однако на самом деле его интересует только частный случай, когда t1=-Ґ, а t2 =+Ґ. (У нас не бывает экспериментальных данных о де­тальном ходе процесса, известно только, что вошло и что вышло. Предельный случай U (t2, t1)при t1®-Ґ и t2®+Ґ обозначается буквой S; теоретик нуждается в величине

<c|S|j>.

Или, если пользоваться формой (6.28), ему нужно вычислить матрицу

<i|S|j>,

называемую S-матрицей. Стало быть, если вы увидите физика-теоретика, который меряет шагами комнату и говорит: «Мне нужно только вычислить S-матрицу», — то вы теперь уже будете понимать, над чем он ломает голову.

Как анализировать S-матрицу, т. е. как указать законы для нее,— вопрос интересный. В релятивистской квантовой механике при высоких энергиях это делается одним способом, в нерелятивистской же квантовой механике — другим, более удобным. (Он годится и в релятивистском случае, но перестает быть таким удобным.) Состоит он в том, чтобы вывести U-мат­рицу для небольших интервалов времени, т. е. для близких t2 и t1. Если мы сможем найти последовательность таких U для последовательных интервалов времени, то сможем проследить за тем, как все меняется в зависимости от времени. Сразу же ясно, что для теории относительности этот способ не очень хорош, потому что не так уж просто указать, как «одновремен­но» все всюду выглядит. Но не стоит нам думать об этом; нашей заботой будет только нерелятивистская механика.

Рассмотрим матрицу U для задержки от t1до t3, где t3 больше t2. Иными словами, возьмем три последовательных момента: t1 меньше t2, t2 меньше t3. Тогда мы утверждаем, что матрица, которая тянется от t1до t3, получается перемноже­нием подряд всего того, что происходит при задержке от t1 до t2, и затем от t2до t3. Это в точности то же самое, что было с двумя последовательными приборами В и А. Тогда, следуя обозначениям, принятым в гл. 3, § 6, мы можем написать

Иначе говоря, можно проанализировать любой интервал вре­мени, если мы умеем анализировать последовательность про­межуточных коротких интервалов. Мы просто перемножаем все куски; это и есть способ нерелятивистского анализа кван­товой механики.

Итак, задача состоит в том, чтобы узнать матрицу U(t2, t1) для бесконечно малого интервала времени — для t2=t1+Dt. Спросим себя: если сейчас у нас есть состояние j, то как оно будет выглядеть через бесконечно малое время Dt? Посмотрим, как это можно расписать. Обозначим состояние в момент t через |y(t)> (мы указываем зависимость y от времени, чтобы было совершенно ясно, что речь идет об условиях в момент t). Теперь зададим вопрос: каково будет положение вещей через короткое время Dt? Ответ таков:

Здесь имеется в виду то же, что и в (6.25), а именно, что амплитуда обнаружить c в момент t+Dt есть

Поскольку мы еще не очень хорошо разбираемся в этих абстрактных вещах, то давайте спроецируем наши амплитуды в определенное представление. Умножая обе части (6.31) на <i|, получаем

Можно также разложить и |y(t)> на базисные состояния и написать

Понять это можно так. Если через Ci(t)=<i|y|(t)> обозна­чить амплитуду пребывания в базисном состоянии i в момент t, то можно считать эту амплитуду (помните, это просто число!) меняющейся во времени. Каждое Сiстановится функцией времени t. Кроме того, у нас есть информация о том, как амп­литуды Сiменяются во времени. Каждая амплитуда в момент (t+Dt) пропорциональна всем прочим амплитудам в момент t, умноженным на ряд коэффициентов. Обозначим U-матрицу через Uij, считая, что

Uij=<i|U|j>.

Тогда (6.34) можно записать так:

Вот как будет выглядеть динамика квантовой механики.

Нам пока мало известно об Uij. Мы знаем только, что при Dt, стремящемся к нулю, ничего не должно произойти, просто должно получиться начальное состояние. Значит, Uij®1 и Uij®0 при i№j. Иными словами, Uij®dij при Dt®0. Кроме того, мы вполне вправе предположить, что при малых At каж­дый из Uijобязан отличаться от dij на величину, пропорцио­нальную Dt; так что можно писать

Однако обычно по историческим и по иным причинам из коэф­фициентов Кijвыносят множитель

(-i/h) ; предпочитают писать

Это, разумеется, то же самое, что и (6.36). Если угодно, это просто определение коэффициентов Hij(t).Члены Hij— это как раз производные по t2от коэффициентов Uij(t2, t1), вычисляемые при t2=t1=t,

Подставляя в (6.35) этот вид U, получаем

Суммируя члены с dij, получаем просто Ci(t), что можно пере­нести в другую сторону уравнения. После деления на Dt мы распознаем в этом производную

или

Вы помните, что Сi(t) — это амплитуда <i|y> обнаружить состояние y в одном из базисных состояний i (в момент t). Значит, уравнение (6.39) сообщает нам, как каждый из коэф­фициентов <i|y> меняется со временем. Но это все равно, что сказать, что (6.39) сообщает нам, как со временем меня­ется состояние y, раз мы описываем y через амплитуды < i|y>. Изменение y со временем описывается через матрицу Нij, которая, конечно, должна включать все то, что мы делали с системой, чтобы вызвать ее изменения. Если мы знаем матрицу Hij, которая содержит в себе всю физику явления и может, вообще говоря, зависеть от времени, то у нас есть полное опи­сание поведения системы во времени. Таким образом, (6.39)— это квантовомеханический закон для динамики мира.

(Нужно сказать, что мы всегда будем выбирать совокуп­ность базисных состояний, которые фиксированы и со временем не меняются. Иногда используют такие базисные состояния, которые сами меняются. Однако это все равно, что пользова­ться в механике вращающейся системой координат, а мы не хотим входить в подобные тонкости.)

§ 5. Гамилътонова матрица

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*