KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Майкл Файер, "Абсолютный минимум. Как квантовая теория объясняет наш мир" бесплатно, без регистрации.
Перейти на страницу:

En=−RH/n2,

где n — главное квантовое число. Это целочисленная величина, которая может принимать значения ≥1, то есть быть больше либо равной единице.

Разница в энергии между любыми двумя энергетическими уровнями даётся формулой Ридберга. Однако в решении Шрёдингера величина RH не является эмпирическим параметром. Решая эту задачу, Шрёдингер нашёл, что постоянная Ридберга связана с фундаментальными постоянными формулой

RH=−μe4/8∙ε02∙h2.

Здесь h — постоянная Планка;

e — заряд электрона;

ε0=8,54∙10−12 Кл2/Джм — постоянная, называемая диэлектрической проницаемостью вакуума;

μ — приведённая масса протона и электрона:

μ=mp∙me/(mp+me),

где mp и me — массы протона и электрона соответственно. Значения заряда и массы электрона и протона уже приводились выше.

Если Ридберг получил экспериментальные данные и вывел эмпирическую формулу, описывающую линии спектра атома водорода, то в решении Шрёдингера для задачи об атоме водорода квантовая теория используется совершенно иным образом. Мы немного задержимся, чтобы восхититься триумфом квантовой теории, достигнутым в 1925 году. При выводе Шрёдингером энергетических уровней атома водорода не использовалось никаких подгоночных параметров. Все необходимые константы — это фундаментальные свойства частиц и электростатического взаимодействия, благодаря которому отрицательно заряженный электрон притягивается к положительно заряженному протону. Шрёдингер не обращался к экспериментальным данным, чтобы подогнать константу RH для лучшего совпадение с ними. Он создал теоретический формализм и применил его к атому водорода. Его теория в точности воспроизвела результаты экспериментальных наблюдений — спектральные линии атома водорода, опираясь только на фундаментальные постоянные.

В отличие от теории Бора уравнение Шрёдингера с успехом применялось к огромному числу других задач, включая атомы, отличные от водорода, а также небольшие и крупные молекулы. Как уже упоминалось, для систем крупнее атома водорода, то есть для атомов и молекул, состоящих более чем из двух частиц, уравнение Шрёдингера нельзя решить точно. Однако было разработано множество эффективных приближённых методов решения уравнения Шрёдингера для атомов, молекул и других типов квантовомеханических систем. Благодаря развитию компьютеров и их огромной вычислительной мощности стало возможно решать уравнение Шрёдингера для очень больших и сложных молекул. В следующих главах рассказывается о формах молекул. Решение уравнения Шрёдингера для молекулы даёт её энергетические уровни и волновые функции. Волновые функции содержат информацию, необходимую для определения формы молекул.

Четыре квантовых числа

Энергии различных состояний атома водорода описываются единственным квантовым числом n. Однако в действительности есть четыре квантовых числа, связанных с электронами в атомах. Они появляются при решении задачи об атоме водорода в рамках квантовой теории. Одно из них существенно лишь для атомов и молекул, имеющих более одного электрона. В этом смысле атом водорода является частным случаем, поскольку в нём всего один электрон. Для атома водорода, помимо главного квантового числа n, есть ещё два квантовых числа — l и m. Число l называется орбитальным квантовым числом, m — магнитным квантовым числом. От них в сочетании с квантовым числом n зависит, сколько различных состояний связано с конкретным значением энергии, они также определяют форму волновых функций. Четвёртое квантовое число обозначается s. Его называют спи́новым квантовым числом.

Когда Бор решал задачу об атоме водорода, в рамках старой квантовой теории считалось, что электрон движется по орбитам, имеющим разные формы и значения энергии. Корректное квантовое решение Шрёдингера для атома водорода даёт энергетические уровни и волновые функции, которые соответствуют боровским орбитам и называются «орбиталями». Обсуждая атомы и молекулы, мы часто используем термины «волновая функция» и «орбиталь» в качестве синонимов. Орбитали являются волнами амплитуды вероятности, которые подчиняются принципу неопределённости Гейзенберга, чем отличаются от боровских орбит.

Как уже отмечалось выше, главное квантовое число n может принимать целочисленные значения n≥1, то есть 1, 2, 3, 4 и так далее, а l может принимать значения от 0 до n−1 с целым шагом. Число m может иметь значения от l до l с целым шагом. Наконец, число s может принимать только два значения: +½ и −½. Сводка возможных значений квантовых чисел приведена в таблице ниже.

По историческим причинам состояния с различными значениями квантового числа l имеют индивидуальные обозначения. Состояние l=0 называется s-орбиталью. При l=1 говорят о p-орбитали, при l=2 — это d-орбиталь, а при l=3 — f-орбиталь. Для обсуждения всех атомов нам не понадобится заходить далее f-орбиталей, то есть l=3. Как показано ниже, различные орбитали имеют разные формы.

Поскольку энергии состояний (орбиталей) атома водорода зависят только от квантового числа n, для n>1 имеется более одного состояния с одинаковой энергией. Для n=1 имеем l=0 и m=0 (см. таблицу), поэтому существует единственная орбиталь с n=1. Для этой орбитали l=0, так что её обозначают как 1s-орбиталь. Для n=2 число l может быть равно 0, что даёт 2s-орбиталь. Однако для n=2 число l также может равняться 1. При l=1 число m может быть равно 1, 0 или −1 (см. таблицу). При l=1 — это p-орбиталь, причём существуют три разные p-орбитали, обозначаемые 2p1, 2p0 и 2p−1. Здесь 2 — это главное квантовое число n, p означает l=1, а три индекса— это три возможных значения m. Таким образом, для n=2 существует четыре различных состояния.

Если n=3, то l может быть равно нулю, что даёт 3s-орбиталь. Также l может быть равно 1, что при m = 1, 0 и −1 даёт орбитали 3p1, 3p0, и 3p−1. Кроме того, l может быть равно 2. Для l=2 число m может иметь значения 2, 1, 0, −1 и −2. Это d-орбитали: 3d2, 3d1, 3d0, 3d−1 и 3d−2. Всего имеется пять d-орбиталей. Таким образом, для n=3 имеется девять различных состояний: одна s-орбиталь, три p-орбитали и пять d-орбиталей. Когда n=4, есть 4s-орбиталь, три различные 4p-орбитали (4p1, 4p0 и 4p−1), пять различных 4d-орбиталей (4d2, 4d1, 4d0, 4d−1 и 4d−2). Дополнительно имеется семь f-орбиталей: 4f3, 4f2, 4f1, 4f0, 4f−1, 4f−2 и 4f−3. Таким образом, для n=4 имеется в общей сложности 16 состояний: одна s-орбиталь, три p-орбитали, пять d-орбиталей и семь f-орбиталей.

Как уже говорилось, каждая из этих орбиталей имеет свою форму. Довольно часто орбитали называют в соответствии с их формой. Например, три различных 2p-орбитали, вместо того чтобы обозначать их 2p1, 2p0 и 2p−1, называют 2px, 2pz и 2py. Связь между этими индексами и формами прояснится, когда мы познакомимся с соответствующими формами.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*