KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Майкл Файер, "Абсолютный минимум. Как квантовая теория объясняет наш мир" бесплатно, без регистрации.
Перейти на страницу:

Бор также выдвинул постулат, известный ныне как правило частот. Частота испускаемого или поглощаемого света при переходе от начального энергетического состояния E1 к конечному E2 равна разности их энергии, делённой на постоянную Планка:

ν=|E1−E2|/h,

где ν — частота, а h — постоянная Планка (h=6,6∙10−34 Джсек). Вертикальными линиями в формуле обозначена абсолютная величина. В случае поглощения E1 меньше E2, так что разность E1−E2 имеет отрицательное значение. Смысл абсолютной величины состоит в том, что в качестве результата берётся положительное значение, даже если разность получается отрицательной. Частота ν должна быть положительным числом. Умножив обе части формулы на h, получаем, что E — разность энергий между энергетическими уровнями (стационарными состояниями) — равна E=h∙ν, то есть даётся формулой Планка, которую использовал Эйнштейн для объяснения обсуждавшегося в главе 4 фотоэлектрического эффекта.

Что же представляет собой атом водорода и в чём недостаток метода, предложенного Бором? Атом водорода состоит из двух заряженных частиц: протона, несущего положительный заряд +1, и электрона, который имеет отрицательный заряд −1. Когда говорится о заряде, равном 1, это в действительности сокращённая запись для заряда одного протона. В стандартных физических единицах он равен 1,6∙10−19 Кл, где Кл — обозначение кулона, единицы измерения заряда. Эрнест Резерфорд (1871–1937) провёл в 1911 году эксперименты, которые показали, что атомы состоят из маленького тяжёлого положительно заряженного ядра и одного или более электронов вокруг него. Резерфорд получил Нобелевскую премию по химии в 1908 году

«за проведённые им исследования в области распада элементов в химии радиоактивных веществ».

Открытия Резерфорда в применении к атому водорода означают, что протон является ядром, а единственный электрон находится вне ядра. Даже ядро водорода, состоящее из одного протона, намного тяжелее электрона. Масса протона составляет mp=1,67∙10−27 кг, тогда как масса электрона равна всего лишь me=9,1∙10−31 кг. То есть протон весит примерно в 1836 раз больше, чем электрон.

В боровской модели водорода электрон обращается вокруг протона, как планета вокруг Солнца. В наинизшем энергетическом состоянии атома водорода (n=1) электрон движется вокруг протона по окружности. В более высоких энергетических состояниях орбита электрона с n больше 1 может принимать различные формы. Некоторые из них остаются окружностями, но другие оказываются эллипсами. С учётом сказанного в предыдущих главах эта картина электрона, обращающегося вокруг протона, должна немедленно вызвать срабатывание «тревожной сигнализации». В главе 6 обсуждался принцип неопределённости Гейзенберга. Мы знаем, что движение абсолютно малой частицы не может описываться классической траекторией. Для описания траектории необходимо знать положение и импульс частицы на протяжении всего времени движения. Однако принцип неопределённости Гейзенберга гласит, что невозможно одновременно и точно знать положение и импульс. В соответствии с соотношением неопределённости Δx∙Δph/4π, где h — постоянная Планка. Абсолютно малые частицы описываются волнами амплитуды вероятности, а не траекториями. Конечно, в 1913 году, когда Бор выдвинул своё математическое описание атома водорода, природа абсолютно малых частиц была ещё неизвестна.

Ошибочность боровского подхода становится очевидной, когда он применяется к системам, отличным от атома водорода. Хотя он способен очень точно предсказать энергетические уровни, а тем самым и спектр атома водорода, он не позволяет сделать это для второго по простоте атома — гелия. Не может он предсказать и свойств простейшей молекулы, а именно молекулы водорода, которая состоит из двух атомов. Метод отбора не объясняет силу химической связи, которая удерживает вместе два атома водорода в молекуле. Тем не менее Бор сделал огромный шаг в правильном направлении, а ошибки его подхода в конечном счёте привели к созданию истинной квантовой теории в 1925 году.

10. Атом водорода: квантовая теория

В 1925 году Шрёдингер и Гейзенберг независимо друг от друга разработали квантовую теорию. Созданные ими два формализма различались с математической точки зрения, но оба были точными и стали основанием для современной квантовой теории. Примерно в то же время Дирак также сделал крупный вклад в науку. Во-первых, он предложил объединённый взгляд на квантовую теорию, в рамках которого показал, что теории Шрёдингера и Гейзенберга, несмотря на математические различия, являются эквивалентными представлениями квантовой механики. Кроме того, он разработал квантовую теорию атома водорода, совместимую с теорией относительности Эйнштейна.

Для описания атомов и молекул обычно используется формулировка Шрёдингера. Поэтому в большинстве случаев мы будем начинать с атома водорода, а затем переходить к более крупным атомам и молекулам, опираясь при этом на понятия и язык, соответствующие шрёдингеровскому подходу.

Уравнение Шрёдингера

Мы использовали очень простой, но корректный математический метод определения энергетических уровней и волновых функций частицы в ящике, но этот метод не является универсальным. Например, он не может использоваться для определения энергетических уровней и волновых функций атома водорода. На самом деле используемые нами понятия, такие как волновые функции и волны амплитуды вероятности, пришли из шрёдингеровской формулировки квантовой механики. Уравнение Шрёдингера — это сложное дифференциальное уравнение в трёх измерениях. Мы не будем касаться математического аппарата, позволяющего решать уравнение Шрёдингера для атома водорода или других атомов и молекул. Однако мы воспользуемся многими полученными с его помощью результатами, чтобы ознакомиться с устройством атомов и молекул, начиная с атома водорода.

Решение задачи об атоме водорода с помощью уравнения Шрёдингера особенно важно, потому что оно является точным. Атом водорода — это пример так называемой задачи двух тел. В ней рассматриваются лишь две частицы: протон и электрон. Следующим по простоте является атом гелия, состоящий из ядра с зарядом +2 и двух отрицательно заряженных электронов. Это задача трёх тел, которую невозможно решить точно. Задача определения орбиты Земли, обращающейся вокруг Солнца, с Луной, обращающейся вокруг Земли, не имеет точного решения в классической механике. Однако и в квантовой, и в классической механике есть очень изощрённые приближённые методы, позволяющие с необходимой точностью решать задачи, которые нельзя решить аналитически. То, что метод является приближённым, не означает, что он грубый. И всё же поскольку задачу об атоме водорода в квантовой механике можно решить точно, она является важной отправной точкой для понимания более сложных атомов и молекул.

Что уравнение Шрёдингера говорит нам о водороде

Что даёт нам решение уравнения Шрёдингера для атома водорода? Оно позволяет определить энергетические уровни атома водорода и волновые функции, связанные с каждым состоянием этого атома. Волновые функции — это трёхмерные волны амплитуды вероятности, которые описывают области пространства, где может быть обнаружен электрон. Решение Шрёдингера для задачи об атоме водорода даёт значения энергетических уровней, совместимые с эмпирически полученной формулой Ридберга:

En=−RH/n2,

где n — главное квантовое число. Это целочисленная величина, которая может принимать значения ≥1, то есть быть больше либо равной единице.

Разница в энергии между любыми двумя энергетическими уровнями даётся формулой Ридберга. Однако в решении Шрёдингера величина RH не является эмпирическим параметром. Решая эту задачу, Шрёдингер нашёл, что постоянная Ридберга связана с фундаментальными постоянными формулой

RH=−μe4/8∙ε02∙h2.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*