KnigaRead.com/

Ричард Фейнман - 6. Электродинамика

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "6. Электродинамика" бесплатно, без регистрации.
Перейти на страницу:

Если площадь каждой петельки Dа, то ее энергия равна IDаBn, где Bn — компонента В, нормальная к Dа. Полная энергия равна U = SIBnDа.

Фиг. 15.4. Энергию большой петли в магнитном поле можно считать суммой энергий маленьких петелек.

В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и

(15.17)

где n — единичная нормаль к da,

Если мы положим В = СXA, то поверхностный интеграл можно будет связать с контурным (по теореме Стокса):

(15.18)

где ds — линейный элемент вдоль Г. Итак, мы получили энер­гию контура произвольной формы:

(15.19)

В этом выражении А обозначает, конечно, векторный потен­циал, возникающий из-за токов (отличных от тока / в про­воде), которые создают поле В близ провода.

Далее, любое распределение постоянных токов можно считать состоящим из нитей, идущих вдоль тех линий, по кото­рым течет ток. Для любой пары таких контуров энергия дается выражением (15.19), где интеграл взят вокруг одного из кон­туров, а векторный потенциал А создан другим контуром. Пол­ная энергия получается сложением всех таких пар. Если вместо того, чтобы следить за парами, мы полностью просуммируем по всем нитям, то каждую энергию мы засчитаем дважды (та­кой же эффект мы наблюдали в электростатике), и полную энергию можно будет представить в виде

(15.20)

Это соответствует полученному для электростатической энергии выражению

(15.21)

Значит, мы можем считать А, если угодно, своего рода потен­циальной энергией токов в магнитостатике. К сожалению, это представление не очень полезно, потому что оно годится только для статических полей. В действительности, если поля со временем меняются, ни выражение (15.20), ни выражение (15.21) не дают правильной величины энергии.

§ 4. B или А?

В этом параграфе нам хотелось бы обсудить такой вопрос: что такое векторный потенциал — просто полезное для расче­тов приспособление (так в электродинамике полезен скалярный потенциал) или же он как поле вполне «реален»? Или же «реаль­но» лишь магнитное поле, так как только оно ответственно за силу, действующую на движущуюся частицу?

Для начала нужно сказать, что выражение «реальное поле» реального смысла не имеет. Во-первых, вы вряд ли вообще полагаете, что магнитное поле хоть в какой-то степени «реаль­но», потому что и сама идея поля — вещь довольно отвлеченная. Вы не можете протянуть руку и пощупать это магнитное поле. Кроме того, величина магнитного поля тоже не очень опреде­ленна; выбором подходящей подвижной системы координат можно, к примеру, добиться, чтобы магнитное поле в данной точке вообще пропало.

Под «реальным» полем мы понимаем здесь вот что: реальное поле — это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,— это говорить, что прочие заряды создают какие-то «условия» (какие — не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и маг­нитное поля), то можем полностью определить поведение части­цы, нимало не заботясь после о том, что именно создало эти условия.

Иными словами, если бы эти прочие заряды каким-то обра­зом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть сово­купность чисел, заданных так, что то, что происходит в некото­рой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потен­циал «реальным» полем.

Вас может удивить тот факт, что векторный потенциал опре­деляется не единственным образом, что его можно изменить, добавив к нему градиент любого скаляра, а силы, действующие на частицы, не изменятся. Однако это не имеет ничего общего с вопросом реальности в том смысле, о котором мы говорили, К примеру, магнитное поле как-то меняется при изменении относительного движения (равно как и Е или А). Но нас ни­сколько не будет заботить, что поле можно изменять таким образом. Нам это безразлично; это никак не связано с вопросом о том, действительно ли векторный потенциал—«реальное» поле, пригодное для описания магнитных эффектов, или же это просто удобный математический прием.

Мы должны еще сделать кое-какие замечания о полезности векторного потенциала А. Мы видели, что им можно пользо­ваться в формальной процедуре расчета магнитных полей заданных токов, в точности как j может применяться для оты­скания электрических полей. В электростатике мы видели, что j давалось скалярным интегралом

(15.22)

Из этого j мы получали три составляющих Е при помощи трех дифференцирований. Обычно это было легче, чем вычислять три интеграла в векторной формуле

(15.23)

Во-первых, их три, а во-вторых, каждый из них вообще-то немного посложнее, чем (15.22).

В магнитостатике преимущества не так ясны. Интеграл для А уже сам по себе векторный:

(15.24)

т. е. здесь написаны три интеграла. Кроме того, вычисляя ро­тор А для получения В, надо взять шесть производных и рас­ставить их попарно. Сразу не ясно, проще ли это, чем прямое вычисление

(15.25)

В простых задачах векторным потенциалом часто бывает пользоваться труднее, и вот по какой причине. Предположим, нас интересует магнитное поле В в одной только точке, а задача обладает какой-то красивой симметрией. Скажем, нам нужно знать поле в точке на оси кольцевого тока. Вследствие симмет­рии интеграл в (15.25) легко возьмется и вы сразу получите В. Если бы, однако, мы начали с А, то пришлось бы вычислять В из производных А, а для этого надо было бы знать А во всех точках по соседству с той,которая нас интересует. Большая же часть их не лежит на оси симметрии, интеграл для А услож­няется. В задаче с кольцом, например, пришлось бы иметь дело с эллиптическими интегралами. В подобных задачах А, разу­меется, не приносит большой пользы. Во многих сложных задачах, бесспорно, легче работать с А, но в общем трудно было бы доказывать, что эти технические облегчения стоят того, чтобы начать изучать еще одно векторное поле.

Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно — «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде

F = q(E+vXB), (15.26)

так что, как только заданы силы, движение оказывается пол­ностью определенным. В любой области, где В = 0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А — не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.

§ 5. Векторный потенциал и квантовая механика

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассмат­ривали раньше.) В частности, постепенно сходит на нет поня­тие силы, а понятия энергии и импульса приобретают перво­степенную важность. Вместо движения частиц, как вы пом­ните, речь теперь идет уже об амплитудах вероятностей, кото­рые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связывае­мые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики.

Фиг. 15.5. Интерференционный опыт с электронами.

Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энер­гиями взаимодействия двух нуклонов, а не с силой их взаимо­действия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике век­торный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с по­мощью А и j.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*