Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра
Чем больше прохождений вблизи Солнца совершила комета, тем большую часть поверхности может занимать корка, препятствующая дальнейшей сублимации. В конце концов, комета становится «потухшей» и для наблюдателя выглядит так же, как астероид. Такие «потухшие» кометные ядра, как это уже отмечалось, вполне могут быть частью популяции АСЗ.
Рис. 4.9. Дезинтеграция кометы Швассмана — Вахмана 3: фрагмент B (слева) и фрагмент G (справа). Снимки получены космическим телескопом Хаббла 18 апреля 2006 г. (http://www.hubblesite.org)
Возможен и другой сценарий эволюции кометного ядра, когда его размер постепенно уменьшается до превращения кометы в мини-комету, а затем и полной ее дезинтеграции.
Кометные ядра имеют форму, заметно отличающуюся от шарообразной и напоминающую неправильную форму некоторых небольших астероидов. Она вполне может являться результатом неравномерной инсоляции и неравномерного испарения вещества с поверхности ядра, вращающегося вокруг некоторой произвольным образом ориентированной в пространстве оси. В результате испарения вещества меняются моменты инерции ядра, что приводит к сложной эволюции его вращения.
В работе [Jessberger and Kotthaus, 1991] представлены основные физические характеристики кометного вещества и ядра в целом. Некоторые основные физические характеристики ядра кометы приведены в табл. 4.4.
Таблица 4.4. Основные физические характеристики кометного ядра (минимальное, наиболее вероятное и максимальное значения)
4.3. Негравитационные эффекты. Космические экспедиции к ядрам комет
То, что сегодня наука,
Завтра — техника.
Эдвард ТеллерВ отличие от астероидов, кометы обнаруживают в своем движении характерные особенности, которые принято называть негравитационными эффектами. Под негравитационными эффектами понимаются явления, связанные с испарением вещества с поверхности ядра кометы. Под воздействием испаряющегося с его поверхности вещества ядро кометы испытывает реактивное давление, что, в свою очередь, вызывает ускорение ядра. Это ускорение называется негравитационным, и оно может как уменьшать, так и увеличивать скорость движения кометы вокруг Солнца в зависимости от комбинации целого ряда факторов, таких как направление собственного вращения ядра, рельеф поверхности ядра, распределение на поверхности областей активной сублимации и другие. Поэтому определение значений негравитационных ускорений представляет собой весьма важную задачу. Кроме того, вектор результирующего негравитационного ускорения не обязательно проходит через центр ядра, что вызывает изменение скорости вращения ядра, вынужденную прецессию, а значит, изменяет величины негравитационных ускорений. Реактивные силы, вызывающие ускорение (или замедление) движения кометы, заметно действуют только в довольно небольшой части орбиты кометы, располагающейся в окрестности Солнца; на остальной части орбиты комета движется практически только под действием гравитационных сил. Эта особенность действия негравитационных сил дала возможность в прошлом применять достаточно простые методики учета негравитационных ускорений. Так, Маковер предположил, что среднее движение кометы меняется мгновенно в момент прохождения кометой перигелия [Маковер, 1955]. Дубяго разработал свой метод, который нашел широкое применение в прошлом веке [Дубяго, 1950]. Он предположил, что вблизи перигелия мгновенно изменяются все элементы орбиты. Однако эти методы не позволяли получать непрерывную траекторию кометы. Марсден [Marsden, 1969] предложил следующую зависимость непрерывно действующих негравитационных сил от гелиоцентрического расстояния r:
ai = Gi e-r/cr-α, Gi = Ai e-Biτ,
где ai — компоненты негравитационного ускорения, Ai, Bi — постоянные, τ — время от начальной эпохи (в сутках), деленное на 104, c и α — неотрицательные постоянные. Дельземме и Миллер [Delsemme and Miller, 1971] получили зависимость испарения различных льдов от гелиоцентрического расстояния. Сравнение этих зависимостей со световыми кривыми некоторых комет показало, что они очень близки к кривым газовой производительности водяного снега. Для учета влияния негравитационных сил на движение комет С. Секанина предложил эмпирическую зависимость скорости испарения водяного снега от гелиоцентрического расстояния:
где r0 = 2,808 а.е., k = 4,6142, n = 5,093, m = 2,15, α = 0,1113.
Марсден [Marsden et al., 1973] применил эту зависимость для нахождения негравитационных параметров многих комет. В дальнейшем за этим методом закрепилось название «метод Марсдена». В этом методе составляющие негравитационного возмущающего ускорения в орбитальной системе координат направлены соответственно по радиус-вектору, перпендикулярно радиус-вектору в плоскости орбиты и перпендикулярно к плоскости орбиты:
ai = Gig(r), Gi = Ai e-Biτ (i = 1, 2, 3),
где Ai, Bi — постоянные, определяемые из наблюдений для каждой кометы, τ — время, прошедшее от начальной эпохи. В настоящее время этот метод активно используется при моделировании действий негравитационных ускорений.
Негравитационные ускорения могут изменять период обращения кометы на величину до нескольких дней. Так, например, орбита кометы Галлея, полученная по наблюдениям 1835 и 1910 гг. без учета негравитационных эффектов, дает ошибку в моменте прохождения кометой перигелия в 1759 г. в 4,3 сут. Для расчетов возможного столкновения кометы с Землей такая ошибка является существенной.
Недостаточно точное знание негравитационных эффектов в движении комет является одной из основных причин, до настоящего времени затрудняющих описание динамики многих комет. Подробные исследования негравитационных ускорений в движении комет были проделаны Секаниной в работах [Sekanina, 1979; 1986], в которых рассматривались различные возможные механизмы, вызывающие отклонение движения комет от гравитационного закона. Им же выдвигались предположения, что эти отклонения могут быть вызваны взрывным процессом, проявляющимся «толчком», заметным в движении кометного ядра. Секанина предложил наряду с орбитальным учитывать и вращательное движение кометного ядра.
Однако негравитационное ускорение является не единственным фактором, влияющим на точность определения орбит комет. Как уже отмечалось, в результате сублимации вещества с поверхности кометы в кому выносится большое количество газа и пыли. Это вещество окружает ядро достаточно плотным облаком, центр яркости которого далеко не всегда совпадает с ядром кометы. Это явление получило в научной литературе название смещения фотоцентра кометы. Впервые оно было зафиксировано визуально во время наблюдения кометы Свифта — Туттля (109P/Swift — Tuttle) в 1862 г. Наблюдатели отмечали появление яркого вторичного ядра. Позднее Бютнер [Buttner, 1918], исследовавший движение кометы 1853 III, отметил, что ошибка наблюдений уменьшается, если предположить, что наблюдения кометы имеют систематическое смещение относительно ядра в сторону Солнца. По его оценкам величина этого смещения была постоянна и равна 2000 км. В дальнейшем исследователи движения комет неоднократно обращались к этому предположению при обработке наблюдений комет. Так, Ситарский [Sitarski, 1984] показал, что с учетом смещения фотоцентра наблюдения комет 1960 II, Григга — Шьеллерупа (26P/Grigg — Skjellerup) и Кирнса — Кви (59P/Kearns — Kwee) представляются лучше, чем без его учета. Йоманс и Шодас [Yeomans and Chodas, 1989], исследуя движение кометы Галлея на интервале трех и четырех появлений кометы, нашли, что величина смещения фотоцентра кометы равна 880 км, при этом они предполагали, что величина смещения изменяется обратно пропорционально квадрату гелиоцентрического расстояния. В работе [Medvedev, 1993] для объяснения явления смещения фотоцентра кометы относительно центра инерции ядра была предложена гипотеза о существовании в голове кометы точки относительного равновесия, в которой накапливается пыль, выносимая с поверхности кометы газом. Показано, что такая точка существует, расположена на линии комета — Солнце и асимптотически устойчива для движений вдоль линии комета — Солнце. Получена простая формула, позволяющая вычислять величину расстояния от этой точки до ядра кометы в зависимости от газопроизводительности и гелиоцентрического расстояния кометы.
Еще одним из эффектов сублимации вещества с поверхности ядра кометы является уменьшение массы и изменение формы кометного ядра. По исследованиям, проведенным в ходе последнего прохождения кометы Галлея через перигелий, эта комета теряет 0,1–0,2 % своей массы за один оборот вокруг Солнца. Учитывая, что средний радиус ядра кометы Галлея составляет 5 км, получаем, что со всей его поверхности в результате сублимации уносится слой толщиной примерно 2,5 м за одно появление кометы, а для комет группы Крейца (см. раздел 4.6) эта величина достигает 20 м. Поэтому время жизни комет на короткопериодической орбите (с периодом обращения меньше 200 лет) ограничено.