Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра
Галлей сделал вывод о том, что это были не три кометы, а одна, движущаяся по очень вытянутой эллиптической орбите и возвращающаяся к Солнцу каждые 75–76 лет, и предсказал ее следующее появление в 1758 г. Комета, которая действительно была переоткрыта в 1758 г., получила название «комета Галлея».
Уже в конце XVII в. высказывались предположения о возможных столкновениях комет с Землей и неизбежном в результате такого столкновения «конце света». В 1770 г. комета Лекселя (D/Lexell) прошла на расстоянии от Земли в 2,25 млн км, что всего в 6 раз больше расстояния от Земли до Луны, подтвердив тем самым реальность угрозы. Большой переполох у жителей Земли вызвало возвращение кометы Галлея в 1910 г. По расчетам астрономов комета должна была сблизиться с Землей на расстояние 22 млн км 20 мая 1910 г. В этот момент комета должна была находиться на прямой линии Земля — Солнце, как бы заслоняя Солнце от земных наблюдателей (рис. 4.3).
Вследствие такого расположения кометы в момент сближения пылинки и молекулы газа, вылетающие с поверхности ядра и образующие хвост кометы, могли долетать до атмосферы Земли. Сообщение об этой возможности вызвало большую тревогу, а в некоторых местах и панику обывателей. В газетах выдвигалось предположение, что погружение Земли в хвост кометы Галлея вызовет отравление и гибель всего живого на Земле. Однако хвост кометы был настолько разрежен, что прохождение Земли через него не вызвало никаких изменений в земной атмосфере.
Рис. 4.3. Положение кометы Галлея в момент ее тесного сближения с Землей 20 мая 1910 г.
Наиболее вероятным зафиксированным фактом столкновения Земли с ядром кометы, произошедшим в течение прошедшего столетия, является Тунгусское явление. 30 июня 1908 г. произошло уникальное событие — огромный болид вошел в плотные слои земной атмосферы и взорвался на высоте около 10 км, вызвав значительные разрушения в сибирской тайге. Кометная природа этого тела подтверждается многочисленными наблюдаемыми особенностями этого небесного феномена [Гладышева, 2008; Никольский и др., 2008]. Грандиозным событием в Солнечной системе явилось уже упомянутое столкновение фрагментов кометы Шумейкеров — Леви 9 с Юпитером в 1994 г. В июле 1992 года эта комета прошла на расстоянии менее 100 тыс. км от Юпитера и распалась на два десятка фрагментов (см. рис. 4.4 на вклейке).
В период с 16 по 22 июля 1994 г. все фрагменты кометы Шумейкеров— Леви 9, как было предсказано заранее [Клумов и др., 1994], упали на Юпитер, вызвав значительные возмущения в его атмосфере. Пятно (см. рис. 4.5 на вклейке), образовавшееся на диске Юпитера в результате падения фрагмента G (все фрагменты кометы были обозначены буквами английского алфавита), уже через 1 ч 45 мин после падения достигло диаметра 9 тыс. км (1,5 радиуса Земли). Оценки размера ядра материнского тела, сделанные на основании анализа движения отдельных фрагментов, лежат в диапазоне от 2 до 10 км в диаметре [Chernetenko and Medvedev, 1994]. Общее количество энергии, выделившееся при падении осколков кометы, по оценкам различных авторов, находится в диапазоне 1028–1030 эрг или 105–107 мегатонн тротилового эквивалента.
Хотя опасных для Земли комет гораздо меньше, чем АСЗ, динамические и физические особенности комет таковы, что опасность эта вполне реальна. Если учитывать, что фактор внезапности, непредсказуемости появления опасного объекта играет важную роль в проблеме астеродно-кометной опасности, то наибольшую опасность представляют близпараболические кометы. Среднее количество таких комет, открываемых в год, за последние несколько лет составило 10–15. Однако это число — величина не постоянная. Существуют предположения, что периодически в окрестности Солнца могут наблюдаться «кометные ливни» — явление, когда число близпараболических комет значительно возрастает. Это связано с возмущениями, действующими на ледяные небесные тела, находящиеся на периферии нашей Солнечной системы. Время от времени возмущения заставляют двигаться ледяные тела в направлении Солнца.
По оценкам Бейли [Bailey, 1992], доля ударных кратеров на земной поверхности, вызванных столкновениями с кометами, может достигать 10 % и выше. Особенно интенсивной бомбардировке Земля подвергалась на ранней стадии своего образования.
Кроме того, как уже отмечалось, наклоны орбит комет могут принимать значения от 0 до 180° (в отличие от короткопериодических комет, наклоны орбит большинства которых невелики), а это означает, что для части комет возможно столкновение с Землей на встречных траекториях. При этом скорость столкновения может достигать 72 км/с. Раннее обнаружение близпараболических комет является единственной гарантией того, что в распоряжении землян будет от нескольких месяцев до нескольких лет для предотвращения их возможного столкновения с Землей.
Таблица 4.1. Кеплеровские элементы орбиты и звездные величины комет, MOID которых меньше 0,1 а.е.
Примечание. H — абсолютная звездная величина, T — момент прохождения через перигелий, e — эксцентриситет орбиты, q — перигелийное расстояние в а.е., ω — аргумент перигелия, Ω — долгота восходящего узла, i — наклон орбиты к плоскости эклиптики (последние три величины даны в градусах).
В табл. 4.1. приводятся элементы орбит и звездные величины короткопериодических комет, минимальные расстояния между орбитами которых и орбитой Земли (MOID, Minimum Object Intersection Distance) меньше 0,1 а.е. Эти кометы можно считать потенциально опасными для Земли, поскольку из-за наличия плохо моделируемых воздействий на ядра комет их орбиты могут достаточно быстро меняться. Такие кометы имеют ненулевую вероятность столкновения с Землей. Уже состоявшиеся известные близкие прохождения комет вблизи Земли приводятся в приложении 2.
4.2. Физические характеристики, строение ядра
В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического эксперимента — полета космических аппаратов к комете Галлея. Целая флотилия космических станций — советские «Вега-1» и «Вега-2», западноевропейская «Джотто», японская «Суисей» (Планета-А) — исследовала комету Галлея. В ходе этих исследований были получены уникальные данные о составе и физических процессах, происходящих на поверхности ядра кометы, впервые с близкого расстояния было сфотографировано ядро кометы. Данные, полученные с космических станций, в основном подтвердили ледяную модель кометного ядра, разрабатываемую Ф. Уипплом с 1950 г. В книге [Comets II, 2005] обсуждаются четыре модели кометного ядра (рис. 4.6).
Рис. 4.6. Модели кометных ядер [Comets II, 2005]: а) — «конгломерат льдов» [Weissman and Kieffer, 1981]; б) — «агрегат фракталов» [Donn and Hughes, 1986]; в) — «изначально смерзшийся щебень» [Weissman, 1986]; г) — «склеенные льды» [Gombosi and Houpis, 1986]
Низкие оценки плотности кометного ядра, полученные из анализа движения кометы Галлея, можно объяснить кластерным механизмом образования кометного ядра, разработанным Донном (рис. 4.6, модель б) и в дальнейшем развитым Гринбергом. Согласно этому механизму, ядро кометы образуется в результате налипания друг на друга отдельных гранул (зерен), представляющих собой частицы, по составу близкие к углистым хондритам. Промежутки между зернами заполнены легкосублимирующим веществом. По этой модели ядро кометы представляет собой очень рыхлое образование, подобное гигантскому снежному кому, и по структуре близко к частицам межпланетной пыли. В модели в, названной Вейссманом «изначально смерзшийся щебень», предполагается наличие некоторого количества крупных ледяных фрагментов, смерзшихся в единое тело. В момент сближения такого ядра с Солнцем в результате нагрева часть осколков может терять механический контакт и образовывать компактный метеорный рой. Эта модель представляет собой развитие идей Фесенкова о существовании кратных кометных ядер и позволяет объяснить распад ядра кометы Шумейкеров — Леви 9 на несколько десятков фрагментов в окрестности Юпитера в 1992 г. Нельзя исключить, что для части ледяных тел верна модель а, когда ядро представляет собой ледяной монолит. Модель г — «склеенные льды» — была разработана по результатам пролетов космических аппаратов около ядра кометы Галлея.
Альтернативными моделями являются модель каменистого монолита, разработанная Б. Ю. Левиным, и модель кометного ядра в виде облака частиц, которую в разное время и в различных модификациях отстаивали Дубяго [Дубяго, 1942], Воронцов-Вельяминов [Воронцов-Вельяминов, 1945], Рихтер [Richter, 1963] и Литтлтон [Lyttleton, 1977]. Интересна модель Литтлтона, которая дает механизм образования таких роев. Согласно его исследованиям, местом образования подобных роев может быть область антиапекса, где в результате гравитационного действия Солнца должна наблюдаться повышенная концентрация межзвездного вещества. Солнце, двигаясь сквозь межзвездное газопылевое облако, действует подобно гигантской линзе, фокусируя частицы в антиапексной области. Частицы огибают Солнце по гиперболам, пересекающимся в области антиапекса. Столкнувшись в этой области, они частично гасят свои скорости, и если полная скорость будет меньше параболической, то столкнувшаяся материя оказывается захваченной Солнцем.