KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Петров, "Гравитация. От хрустальных сфер до кротовых нор" бесплатно, без регистрации.
Перейти на страницу:

Чаще всего обнаружить гравитационные линзы можно по наблюдениям пар квазаров, которые имеют похожие спектры и временную переменность компонентов, отличающуюся лишь временным сдвигом, который может принимать значения для различных пар изображений от нескольких дней до нескольких лет!

Рис. 7.6. Геометрия точечной гравитационной линзы


В случае, когда источник не точечный, появление кольца в принципе возможно, хотя скорее будет два растянутых изображения в виде дуг. В реальных ситуациях или угловое расстояние между изображениями слишком мало, или линза имеет большую массу и большие размеры, так что ее нельзя рассматривать как материальную точку (как в первых наблюдаемых примерах гравитационных линз). Реальные эффекты гравитационного линзирования зависят от разных параметров, а число возможных изображений и сами изображения разнообразны.

Гравитационные линзы в настоящее время являются и важным инструментом астрономических исследований. С их помощью можно: 1) получить независимую от других методов исследований оценку параметров расширения Вселенной; 2) оценить массы гравитационных линз, большая часть которых испускает слишком мало электромагнитного излучения, чтобы их можно было обнаружить с помощью стандартных астрономических методов; 3) по наблюдаемому изменению формы удаленных фоновых галактик с помощью методов так называемого слабого гравитационного линзирования можно восстановить распределение поверхностной плотности удаленных скоплений галактик; 4) по характерному изменению наблюдаемой светимости фоновой звезды можно обнаружить невидимые объекты с массами порядка солнечной, то есть обнаружить так называемое микролинзирование. Это как раз то явление, которое Хвольсону и Эйнштейну казалось слишком недоступным для наблюдения.

Недавно, в 2007 году, было установлено, что одно из событий микролинзирования вызвано коричневым карликом – это почти невидимые объекты небольшой (по звездным меркам) массы. Таким образом, микролинзирование расширяет возможности исследования этих малодоступных для обнаружения и наблюдений, но очень интересных и важных тусклых звезд.

Глава 8

Черные дыры

Горизонт стремительно загибался всё круче и круче, и казалось, что все мы находимся на дне колоссального кувшина.

Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»

Темные звезды Мичелла-Лапласа

Как ни странно, чтобы начать рассказ о черных дырах, которые предсказала общая теория относительности, мы снова должны вернуться к временам Ньютона. Как мы уже обсуждали, и сам Ньютон, и его современники имели все основания полагать, что световые лучи отклоняются тяготеющими телами, то есть свет притягивается точно так же, как обычные материальные частицы. Этого было вполне достаточно, чтобы построить модель невидимой (темной, черной) звезды. У такой звезды сила притяжения на поверхности, вычисленная в соответствии с законом всемирного тяготения, должна быть такой, что свет не может покинуть ее. Поскольку это было время научного подъема в просвещенном обществе, то, видимо, многие задумывались об этой проблеме. Сейчас известно, что в 1783 году свои соображения по этому поводу представил английский священник и один из основателей научной сейсмологии Джон Мичелл (1724–1793). Независимо, но позднее, аналогичные выводы были сделаны французским математиком, физиком и астрономом Пьером Лапласом (1749–1827). Аргументацию Лапласа мы и приводим.

Результаты были представлены в книге «Изложение системы мира», вышедшей в 1795 году. Утверждение Лапласа звучало следующим образом: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Доказательство этого утверждения он опубликовал позднее. Расчет был основан на понятии второй космической скорости на поверхности небесного тела. Это та скорость, которую надо придать объекту, чтобы он, поборов тяготение, покинул небесное тело. Если начальная скорость меньше второй космической, то силы тяготения затормозят и остановят движение объекта. Для примера: вторая космическая скорость на поверхности Земли равна 11 км/с, на поверхности Юпитера – 61, на поверхности Солнца – 620. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. А поскольку скорость света была известна Лапласу, то ему оставалось смоделировать небесное тело, для которого эта скорость оказалась бы второй космической.

Снова решение Шварцшильда

Пример невидимой звезды Мичелла-Лапласа, хотя и основан на теории, которая не в состоянии дать правильные решения для реальных черных дыр со всем многообразием эффектов и необычных свойств, демонстрирует самое главное их свойство. Черная дыра обладает настолько сильным гравитационным притяжением, что нет сил в природе, которые бы могли его превозмочь.

Теперь самое время перейти к черным дырам в ОТО. Сначала нужно вернуться к решению Шварцшильда, повторим запись интервала для него:

До сих пор мы использовали его для описания искривленного пространства-времени вокруг (вне) «обычных» статичных сферически симметричных тел, размеры которых существенно больше соответствующего гравитационного радиуса rg. Как видно, при этом условии внешнее решение не имеет особенностей. А как описывает теория Эйнштейна такие системы полностью? Внешнее вакуумное решение нужно дополнить внутренним, которое будет отличаться от решения Шварцшильда. Снова ограничимся условиями сферической симметрии и статичности, но к ним добавим условия «сшивки» с внешним решением на границе. Чтобы получить внутреннее решение, используют уже не вакуумные уравнения Эйнштейна, а уравнения ОТО с материей (веществом тела). Необходимо определиться также с уравнениями для самой материи. Как минимум, это уравнение состояния (связи между давлением и плотностью). Затем все уравнения решаются совместно. Такие внутренние решения найдены, они также не имеют никаких особенностей, то есть весь физический объект (тело с внешним полем) получается вполне регулярным, и пока нет речи о черных дырах.

Зададимся вопросом: что произойдет, если, сохраняя массу, взять тело меньшего радиуса, и, соответственно, меньшего объема? При несущественном сжатии ничего особенного не произойдет. Внешнее искривленное пространство-время будет представлено все тем же решением Шварцшильда. Если кто-то очень сильный «уплотнит» Солнце, сожмет его в несколько раз, сохраняя сферическую симметрию, то это никак не повлияет на движение планет – они будут двигаться по тем же орбитам. Обсуждая черные дыры Мичелла-Лапласа, мы отметили, что вторая космическая скорость тем больше, чем меньше радиус тела при той же массе. Поэтому, стремясь увеличить вторую космическую скорость, давайте, мысленно (пренебрегая реальными условиями состояния вещества) уменьшать радиус тела, сохраняя массу.

До каких пор интересно продолжать этот мысленный процесс? Как видно, при r = rg решение Шварцшильда перестает быть регулярным: коэффициент временной части обратится в нуль, а пространственной, наоборот, – в бесконечность! Может r = rg это как раз тот размер объекта, когда вторая космическая скорость равна скорости света? Поэтому, давайте, продолжим мысленное сжатие, пока все вещество не станет сосредоточено в сфере, меньшего радиуса, чем гравитационный rg.

Напомним, что гравитационный радиус пропорционален массе тела. Сжатая до гравитационного радиуса Земля была бы горошиной диаметром 1,6 см, а Солнце – шаром диаметром 6 км. После такого сжатия область в окрестности сферы радиуса rg и все остальное пространство станут вакуумными. Это дает возможность без помех исследовать распространение сигналов вдали от объекта и вблизи rg, к чему мы и переходим.

Сначала разумно вернуться к «эйнштейновским» эффектам, которые мы уже обсудили в окрестности «обычных» небесных тел, таких как Солнце. Приближение к области в окрестности гравитационного радиуса делает их проявление чрезвычайно выраженным и даже парадоксальным.

Начнем с отклонения луча света. То, что с приближением к сфере радиуса rg угол отклонения луча будет увеличиваться – вполне ожидаемо. Но до какой степени возможно это отклонение? Оказывается, при достаточном приближении луч может обогнуть объект и уйти в обратном направлении. Далее, если он будет проходить на расстоянии полутора rg от центра, то угол отклонения станет полным оборотом. То есть в этом случае луч света начнет вращаться по круговой орбите! В отличие от орбит планет, эта орбита неустойчива – после любого незначительного возмущения луч либо покинет объект, либо «свалится» в него. Если продолжить процедуру и еще приблизить луч к центру, то его траектория превратится в спираль, и он будет захвачен объектом.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*