Ричард Фейнман - 3a. Излучение. Волны. Кванты
· · ·
Если движение всего вещества, подобно электронам, нужно описывать, пользуясь волновыми понятиями, то как быть с пулями в нашем первом опыте?
Фиг. 37.5. Интерференционная картина при рассеянии пуль.
а — истинная (схематично); б — наблюдаемая.
Почему мы не увидели там интерференционной картины? Дело оказывается в том, что у пуль длина волны столь незначительна, что интерференционные полосы становятся очень тонкими. Столь тонкими, что никакой детектор разумных размеров не разделит их на отдельные максимумы и минимумы. Мы с вами видели только нечто усредненное — это и есть классическая кривая. На фиг. 37.5 мы попытались схематически изобразить, что происходит с крупными телами. На фиг. 37.5, а показано распределение вероятностей для пуль, предсказываемое квантовой механикой. Предполагается, что резкие колебания должны дать представление об интерференционной картине от очень коротких волн. Но любой физический детектор неизбежно вынужден будет накрыть сразу множество зигзагов этой кривой, так что измерения, проведенные с его помощью, дадут плавную кривую, показанную на фиг. 37.5,6.
§ 7. Начальные принципы квантовой мвханики
Теперь подытожим основные выводы из наших опытов. Сделаем мы это в такой форме, чтобы они оказались справедливыми для всего класса подобных опытов. Сводку итогов можно записать проще, если сперва определить «идеальный опыт», т. е. опыт, в котором отсутствуют неопределенные внешние влияния и нет никаких не поддающихся учету изменений, колебаний и т. д. Точная формулировка будет такова: «Идеальным опытом называется такой, в котором все начальные и конечные условия опыта полностью определены». Такую совокупность начальных и конечных условий мы будем называть «событием». (Например: «электрон вылетает из пушки, попадает в детектор, и больше ничего не происходит».) А сейчас дадим нашу сводку выводов.
СВОДКА ВЫВОДОВ
Вероятность события в идеальном опыте дается квадратом абсолютной величины комплексного числа j, называемого амплитудой вероятности.
Р — вероятность,
j — амплитуда вероятности, (37 6)
Р=|j|2.
Если событие может произойти несколькими взаимно исключающими способами, то амплитуда вероятности события — это сумма амплитуд вероятностей каждого отдельного способа. Возникает интерференция.
(37.7)
3) Если ставится опыт, позволяющий узнать, какой из этих взаимно исключающих способов на самом деле осуществляется, то вероятность события—это сумма вероятностей каждого отдельного способа. Интерференция отсутствует.
P = P1 +P2 (37.8)
· · ·
Быть может, вам все еще хочется выяснить: «А почему это? Какой механизм прячется за этим законом?» Так вот: никому никакого механизма отыскать не удалось. Никто в мире не сможет вам «объяснить» ни на капельку больше того, что «объяснили» мы. Никто не даст вам никакого более глубокого представления о положении вещей. У нас их нет, нет представлений о более фундаментальной механике, из которой можно вывести эти результаты.
Мы хотели бы подчеркнуть очень важное различие между классической и квантовой механикой. Мы уже говорили о вероятности того, что электрон попадает туда-то и туда-то в данных обстоятельствах. Мы подразумевали, что с нашим (да и с самым лучшим) экспериментальным устройством невозможно будет предсказывать точно, что произойдет. Мы способны только определять шансы! Это означало бы, если это утверждение правильно, что физика отказалась от попыток предсказывать точно, что произойдет в определенных условиях. Да! Физика и впрямь сдалась. Мы не умеем предсказывать, что должно было бы случиться в данных обстоятельствах. Мало того, мы уверены, что это немыслимо: единственное, что поддается предвычислению,— это вероятность различных событий. Приходится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его!
Сделаем теперь несколько замечаний об одном утверждении, которое иногда делали те, кто не хотел пользоваться приведенным описанием. Они говорили: «Может быть, в электроне происходят какие-то внутренние процессы, имеются какие-то внутренние переменные, о чем мы пока ничего не знаем. Может быть, именно поэтому мы не умеем предугадывать, что случится. А если бы мы могли попристальней вглядеться в электрон, то смогли бы сказать, куда он придет». Насколько нам известно, такой возможности нет. Трудности все равно остаются. Предположим, что внутри электрона есть механизм какого-то рода, определяющий, куда электрон собирается попасть. Тогда эта машина должна определить также, через какое отверстие он намерен проследовать. Но не забывайте, что вся эта внутриэлектронная механика не должна зависеть от того, что делаем мы, и, в частности, от того, открыли мы данное отверстие или нет. Значит, если электрон, отправляясь в путь, уже прикинул, сквозь какую дырку он протиснется и где он приземлится, то для электронов, облюбовавших отверстие 1, мы получим распределение P1, а для остальных — распределение p2. А тогда для тех электронов, которые прошли через оба отверстия, с необходимостью распределение окажется суммой P1+P2 . Не видно способа обойти этот вывод. Но мы экспериментально доказали, что он неверен. Никто еще не нашел отгадки этой головоломки. Стало быть, в настоящее время приходится ограничиваться расчетом вероятностей. Мы говорим «в настоящее время», но мы очень серьезно подозреваем, что все это — уже навсегда и разгрызть этот орешек человеку не по зубам, ибо такова природа вещей.
§ 8. Принцип неопределенности
Вот как сам Гейзенберг сформулировал свой принцип неопределенности: если вы изучаете какое-то тело и вы в состоянии определить z-компоненту импульса тела с неопределенностью Dp, то вы не можете одновременно определить координату х тела с точностью, большей чем Dx= h/Dp.
Произведение неопределенностей в положении тела и в его импульсе в любой момент должно быть больше постоянной Планка. Это частный случай принципа неопределенности. Более, общая формулировка была высказана в предыдущем параграфе: нельзя никаким образом устроить прибор, определяющий, какое из двух взаимно исключающих событий осуществилось, без того, чтобы в то же время не разрушилась интерференционная картина.
Сейчас на одном частном случае мы покажем, что, если не иметь в своем распоряжении какого-нибудь принципа, наподобие принципа Гейзенберга, трудностей избежать никак нельзя. Представим себе такое видоизменение опыта, показанного на фиг. 37.3, в котором стенкой с отверстиями служит пластинка на катках, способная откатываться вверх и вниз (в x-направлении),
как показано на фиг. 37.6.
Фиг. 37.6. Опыт, в котором измеряется отдача стенки.
Внимательно следя за движением пластинки, можно попытаться узнать, сквозь какое отверстие прошел электрон. Представьте, что случится, когда детектор поставят в точку х=0. Когда электрон проходит через отверстие 1, он должен отклониться вниз от пластинки, чтобы попасть в детектор. Так как изменилась вертикальная компонента импульса, то к пластинке приложится сила отдачи — тот же импульс, но в противоположном направлении. Пластинка испытает толчок вверх. А когда электрон пройдет сквозь нижнее отверстие, пластинка почувствует толчок вниз. И при любом другом положении детектора импульс, получаемый пластинкой, будет тоже неодинаков: когда электрон проскакивает через верхнюю дырку — один, когда сквозь нижнюю — другой. И, значит, не трогая электрон, ни капельки не возмущая его, а лишь следя за пластинкой, можно узнать, каким путем воспользовался электрон.
Чтобы определить это, нам нужно только знать, каков был импульс экрана до прихода электрона. Тогда, измерив импульс экрана после пролета электрона, мы сразу увидим, насколько он переменился. Но вспомните, что, согласно принципу неопределенности, при этом уже невозможно будет знать положение пластинки с произвольной точностью. Однако если мы не знаем точно, где она находится, как же мы узнаем, где эти два отверстия? Для каждого нового электрона, проникающего сквозь пластинку, отверстия окажутся на новом месте. А это значит, что центр нашей интерференционной картины для каждого электрона тоже будет на новом месте. Интерференционные полосы (колебания вероятности) смажутся. В следующей главе мы докажем численно, что при измерении импульса пластинки (достаточно точном для того, чтобы из измерений отдачи узнать номер отверстия) неопределенности в координате х пластинки как раз хватит на то, чтобы сдвинуть возникающую в детекторе картину вверх или вниз на расстояние от максимума до ближайшего минимума. От этих случайных сдвигов картина интерференции размажется и от нее, в конце концов, не останется и следа.