Ричард Фейнман - 7. Физика сплошных сред
Обозначим через wp угловую скорость прецессии, так что за промежуток времени Dt угол прецессии будет равен wpDt. Из геометрии рисунка мы видим, что изменение момента количества движения за время Dt равно
DJ=(Jsinq)(wpDt), а скорость изменения момента количества движения
dJ/dt=wpJsinq (34.8)
что должно равняться моменту силы
t=mBsinq. (34.9)
Угловая скорость прецессии будет равна
Подставляя из уравнения (34.6) отношение m/J, мы видим, что для атомной системы
wp=g(qe/2m)B (34.11)
т. е. частота прецессии пропорциональна В. Полезно запомнить, что для атома (или электрона)
а для ядра
(Формулы для атомов и ядер различны только благодаря различным соглашениям относительно g в этих двух случаях.) Итак, в соответствии с классической теорией электронные орбиты и спины в атоме должны прецессировать в магнитном поле. Верно ли это и в квантовой механике? В сущности это верно, однако смысл «прецессии» здесь совсем иной. В квантовой механике нельзя говорить о направлении момента количества движения в том же смысле, как это делается классически; тем не менее аналогия здесь очень близкая, настолько близкая, что мы продолжаем пользоваться термином «прецессия». Мы еще обсудим это позднее, когда будем говорить о квантовомеханической точке зрения.
§ 4. Диамагнетизм
Рассмотрим теперь с классической точки зрения диамагнетизм. К этому можно подойти несколькими путями, но один из лучших такой. Предположим, что по соседству с атомом медленно включается магнитное поле. При изменении магнитного поля благодаря магнитной индукции будет генерироваться электрическое поле. По закону Фарадея контурный интеграл от Е по замкнутому контуру равен скорости изменения магнитного потока через этот контур. Предположим, что в качестве контура Г мы выбрали окружность радиусом r, центр которой совпадает с центром атома (фиг. 34.4).
Фиг. 34.4. Индуцированные электрические силы, действующие на электроны в атоме.
Среднее тангенциальное электрическое поле Е на этом контуре определяется выражением
т. е. возникает циркулирующее электрическое поле, напряженность которого равна
Индуцированное электрическое поле, действуя на атомный электрон, создает момент силы, равный -qeEr, который должен быть равен скорости изменения момента количества движения dJ/dt:
Интегрируя теперь по времени, начиная с нулевого поля, мы находим, что изменение момента количества движения из-за включения поля будет равно
Это и есть тот дополнительный момент количества движения, который сообщается электрону за время включения поля.
Такой добавочный момент количества движения приводит к добавочному магнитному моменту, который благодаря тому, что это орбитальное движение, равен просто произведению -qe/2m на момент количества движения. Наведенный диамагнитный момент
Знак минус (как можно убедиться непосредственно из закона Ленца) означает, что направление добавочного момента противоположно магнитному полю.
Мне бы хотелось написать выражение (34.16) несколько по-иному. Появившаяся у нас величина r2 представляет собой расстояние от оси, проходящей через атом и параллельной полю В, так что если поле В направлено по оси z, то оно равно x2+y2. Если мы рассмотрим сферически симметричные атомы (или усредним по атомам, естественные оси которых могут располагаться во всех направлениях), то среднее от z2+y2 равно 2/3 среднего квадрата истинного радиального расстояния от центра атома. Поэтому уравнение (34.16) обычно более удобно записывать в виде
Во всяком случае, мы нашли, что индуцированный атомный момент пропорционален магнитному полю В и противоположен ему по направлению. Это и есть диамагнетизм вещества. Именно этот магнитный эффект ответствен за малые силы, действующие на кусочек висмута в неоднородном магнитном поле.(Вы можете определить величину этой силы, воспользовавшись выражением для энергии наведенного момента в поле и результатами измерений изменения энергии при движении образца в область сильного поля или из нее.)
Но перед нами все еще стоит такая проблема: чему равен средний квадратичный радиус <r2>ср? Классическая механика не может дать нам ответа. Мы должны вернуться назад и, вооружившись квантовой механикой, начать все снова. Мы не можем знать, где именно находится электрон в атоме, а знаем лишь, что имеется вероятность его обнаружить в некотором месте. Если мы будем интерпретировать <r2>ср как среднее значение квадрата расстояния от центра для данной вероятности распределения, то диамагнитный момент, даваемый квантовой механикой, определяется тем же самым выражением (34.17). Оно, разумеется, дает нам момент одного электрона. Полный же момент будет суммой по всем электронам в атоме. Удивительно, что и классические рассуждения и квантовая механика дают тот же ответ, хотя, как мы увидим дальше, «классические» рассуждения, которые приводят к (34.17), на самом деле несостоятельны в рамках самой классической механики.
Такой же диамагнитный эффект будет наблюдаться даже у атомов с постоянным магнитным моментом. При этом система тоже будет прецессировать в магнитном поле. Во время прецессии атома в целом он набирает небольшую дополнительную угловую скорость, а подобное медленное вращение приводит к маленькому току, который дает поправку к магнитному моменту. Это тот же диамагнитный эффект, но поданный по-другому. Однако на самом деле, когда мы говорим о парамагнетизме, нам не нужно заботиться об этой добавке. Если мы сначала подсчитали диамагнитный эффект, как это было сделано здесь, нас не должен беспокоить небольшой дополнительный ток, происходящий из-за прецессии. Он уже включен нами в диамагнитный член.
§ 5. Теорема Лармора
Теперь уже из наших результатов можно сделать кое-какие заключения. Прежде всего в классической теории момент m всегда пропорционален J, причем для каждого вида атомов со своей константой пропорциональности. В классической теории у электрона нет никакого спина и константа пропорциональности всегда равна -qe/2m, иначе говоря, мы должны в (34.6) положить g=1. Отношение m к Jне зависело от внутреннего движения электронов. Таким образом, в соответствии с классической теорией все системы электронов должны были прецессировать с одной и той же угловой скоростью. (В квантовой механике это неверно.) Этот результат связан с одной теоремой классической механики, которую мне бы хотелось сейчас доказать. Предположим, что имеется группа электронов, которые удерживаются вместе притяжением к центральной точке, подобно электронам, притягиваемым ядром. Эти электроны будут также взаимодействовать друг с другом, и движение их, вообще говоря, довольно сложно. Пусть вы нашли их движение в отсутствие магнитного поля и хотите знать, каково будет движение в слабом магнитном поле. Теорема утверждает, что движение в слабом магнитном поле всегда будет таким же, как и движение без поля с добавочным вращением относительно оси поля с угловой скоростью wL=qeB/2m. (Это то же самое, что и wp при g=1.) Разумеется, возможных движений может быть много. Все дело в том, что каждому движению без магнитного поля соответствует движение в поле, которое состоит из первоначального движения плюс равномерное вращение. Это и есть теорема Лармора, а частота wL называется ларморовой частотой.
Мне бы хотелось показать вам, как можно доказать эту теорему, но детали доказательства я предоставлю вам самим.
Возьмем сначала электрон в центральном силовом поле. На него просто действует направленная к центру сила F(r). Если теперь включить однородное магнитное поле, то появится дополнительная сила qvXВ, так что полная сила будет равна
F(r)+qvXB. (34.18)
Посмотрим теперь на те же самые электроны из системы координат, вращающейся с угловой скоростью w относительно оси, проходящей через центр силы и параллельной полю В. Она уже не будет инерциальной системой, а посему нам нужно добавить надлежащие псевдосилы: центробежные силы и силы Кориолиса, о которых мы говорили в гл. 19 (вып. 2). Там мы обнаружили, что в системе отсчета, вращающейся с угловой скоростью w, действуют кажущиеся тангенциальные силы, пропорциональные vr— радиальной компоненте скорости: