Ричард Фейнман - 3a. Излучение. Волны. Кванты
(37.1)
т. е. вероятности просто складываются. Действие двух дырок складывается из действий каждой дырки в отдельности. Этот результат наблюдений мы назовем отсутствием интерференции по причине, о которой вы узнаете после. На этом мы покончим с пулями.
Они приходят порциями, и вероятность их попадания складывается без интерференции.
§ 3. Опыт с волнами
Теперь проведем опыт с волнами на воде. Прибор показан схематически на фиг. 37.2. Это мелкое корытце, полное воды. Предмет, обозначенный как «источник волн», колеблясь при помощи моторчика вверх и вниз, вызывает круговые волны. Справа от источника опять стоит перегородка с двумя отверстиями, а дальше — вторая стенка, которая для простоты сделана поглощающей (чтобы волны не отражались): насыпана песчаная отмель. Перед отмелью помещается детектор; его опять, как и раньше, можно передвигать по оси х. Теперь детектор — это устройство, измеряющее «интенсивность» волнового движения. Представьте себе приспособление, измеряющее высоту волн. Если его шкалу откалибровать пропорционально квадрату высоты, то отсчеты шкалы смогут давать интенсивность волны. Детектор, таким образом, будет определять энергию, переносимую волной, или, точнее, долю энергии, доставляемую детектору.
Первое, в чем можно убедиться при помощи такого волнового аппарата,— это что интенсивность может быть любой величины. Когда источник движется еле-еле, то и детектор показывает тоже чуть заметное движение. Если же движение возрастет, то и в детекторе интенсивность подскочит. Интенсивность волны может быть какой угодно. Мы уже не скажем, что в интенсивности есть какая-то «порционность».
Заставим теперь волновой источник работать стабильно, а сами начнем измерять интенсивность волн при различных значениях х. Мы получим интересную кривую (кривая I12 на фиг. 37.2,в).
Но мы уже видели, откуда могут возникать такие картинки,— это было тогда, когда мы изучали интерференцию электрических волн. И здесь можно видеть, как первоначальная волна дифрагирует на отверстиях, как от каждой щели расходятся круги волн. Если на время одну щель прикрыть и измерить распределение интенсивности у поглотителя, то кривые выйдут довольно простыми (см. фиг. 37.2,б)
Фиг. 37.2. Опыт с волнами на воде.
Кривая I1 — это интенсивность волн от щели 1 (когда ее измеряли, щель 2 была закрыта), а кривая I2 — интенсивность волн от щели 2 (при закрытой щели 1).
Мы видим со всей определенностью, что интенсивность /12, наблюдаемая, когда оба отверстия открыты, не равна сумме интенсивностей I1 и I2. Мы говорим, что здесь происходит «интерференция», наложение двух волн. В некоторых местах: (где на кривой Ii2 наблюдается максимум) волны оказываются «в фазе», пики волн складываются вместе, давая большую амплитуду и тем самым большую интенсивность. В этих местах говорят о «конструктивной интерференции». Она наблюдается в тех местах, расстояние которых от одной из щелей на целое число длин волн больше (или меньше) расстояния от другой.
А в тех местах, куда две волны приходят со сдвигом фаз p(т. е. находятся «в противофазе»), движение водил представляет собой разность двух амплитуд. Волны «интерферируют деструктивно», интенсивность получается маленькой. Это бывает там, где расстояние от щели 1 до детектора отличается от расстояния между детектором и щелью 2 на нечетное число полуволн. Малые значения I12 на фиг. 37.2 отвечают местам, где две волны интерферируют деструктивно.
Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высота волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’1eiwt, где «амплитуда» h’1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’1|2. Высота волн от щели 2 тоже равна h2eiwt, а интенсивность пропорциональна |h’2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’1+h’2)eiwt
и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерферирующих волн можно записать в виде
Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем
где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать
Последний член и есть «интерференционный член».
На этом мы покончим с волнами. Интенсивность их может быть любой, между ними возникает интерференция.
§ 4. Опыт с электронами
Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой током и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на коробку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пушкой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками
Фиг. 37.3. Опыт с электронами.
За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.
Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов прибор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, известно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.
Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полущелков».
Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........
щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть
счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколько раз динамик щелкнул за достаточно длительное время (скажем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).
Когда мы переставляем детектор, частота щелчков то растет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не разделит двух щелчков, последовавших очень быстро один за другим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция, Мы говорим: «Электроны всегда приходят одинаковыми порциями».
Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова относительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчитывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоянии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая p12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!
§ 5. Интерференция электронных волн