KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 3a. Излучение. Волны. Кванты

Ричард Фейнман - 3a. Излучение. Волны. Кванты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "3a. Излучение. Волны. Кванты" бесплатно, без регистрации.
Перейти на страницу:

§ 7. Начальные принципы квантовой механики

§ 8, Принцип неопределен­ности

§ 1. Атомная механика

В последних нескольких главах мы с вами рассмотрели многие существенные понятия, без которых невозможно разобраться ни в яв­лении света, ни вообще в электромагнит­ном излучении. (Некоторые специальные воп­росы — теорию показателя преломления плот­ного вещества и полное внутреннее отражение — мы отложим до будущих времен.) Мы имели дело с так называемой «классической теорией» электромагнитных волн, и для множества яв­лений она давала достаточно точное описание природы. И нас не очень заботило при этом, что световая энергия всегда доставляется пор­циями — «фотонами».

Очередной темой, которой мы собираемся заняться (в главах, начиная с 39), является проблема поведения сравнительно крупных массивов вещества — их механических или, скажем, их тепловых свойств. Знакомясь с этими свойствами, мы увидим, что старая клас­сическая теория здесь немедленно терпит неудачу, терпит по той причине, что вещество на самом деле состоит из частиц атомных разме­ров. И если все же мы намерены пользоваться старой теорией, то только потому, что это единственное, в чем мы можем разобраться с помощью изученной нами классической ме­ханики. Но наши успехи не будут велики. Мы обнаружим, что в отличие от теории света теория вещества на этом пути довольно быстро наталкивается на затруднения. Можно было бы, конечно, обойти все атомные эффекты сто­роной. Но вместо этого мы решили здесь вклинить небольшой экскурс в основные идеи квантовых свойств вещества, в квантовые представления атомной физики.

Надо же, чтоб вы хоть примерно представляли, как выглядит то, что мы обходим. Все равно ведь атомные эффекты до того важны, что нам не миновать познакомиться с ними вплотную.

Стало быть, сейчас мы перейдем к введению в предмет кван­товой механики. Но по-настоящему проникнуть в суть пред­мета вы сможете лишь намного позже.

Квантовая механика — это описание поведения мельчай­ших долек вещества, в частности всего происходящего в атом­ных масштабах. Поведение тела очень малого размера не похоже ни на что, с чем вы повседневно сталкиваетесь. Эти тела не ведут себя ни как волны, ни как частицы, ни как облака, или биллиардные шары, или грузы, подвешенные на пружинах,— словом, они не похожи ни на что из того, что вам хоть когда-нибудь приходилось видеть.

Ньютон считал, что свет состоит из частиц. А потом оказа­лось, как мы уже убедились, что свет ведет себя подобно вол­нам. Позже, однако (в начале XX века), обнаружили, что, дей­ствительно, поведение света временами напоминает частицу. Об электроне же, наоборот, сначала думали, что он похож на частицу, а потом было выяснено, что во многих отношениях он ведет себя как волна. Значит, на самом деле его поведение ни на что не похоже. И мы сдались. Мы так и говорим: «Он ни на что не похож».

Однако, к счастью, есть еще одна лазейка: дело в том, что электроны ведут себя в точности подобно свету. Квантовое поведение всех атомных объектов (электронов, протонов, нейт­ронов, фотонов и т. д.) одинаково: всех их можно назвать «час­тицами-волнами» (годится, впрочем, и любое другое название). Значит, все, что вы узнаете про свойства электронов (а именно они будут служить нам примером), все это будет применимо к любым «частицам», включая фотоны света.

В течение первой четверти нашего века постепенно накап­ливалась информация о поведении атомов и других мельчайших частиц, и знакомство с этим поведением вело ко все большему замешательству среди физиков. В 1926—1927 гг. оно было уст­ранено работами Шредингера, Гейзенберга и Борна. Им удалось в конце концов получить непротиворечивое описание поведения вещества атомных размеров. Основные характерные черты этого описания мы и разберем в данной главе.

Раз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику — всем оно кажется своеобразным и ту­манным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественно, потому что весь непосредственный опыт человека, вся его интуиция — все прилагается к крупным телам. Мы знаем, что будет с большим предметом; но именно так мельчайшие тельца и не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом.

В этой главе мы сразу же попробуем ухватить самый основ­ной элемент таинственного поведения в самой странной его форме. Мы выбрали для анализа такое явление, которое невоз­можно, совершенно, абсолютно невозможно объяснить классиче­ским образом. В этом явлении таится самая суть квантовой ме­ханики. Но на самом деле в нем прячется только одна-единственная тайна. Мы не можем раскрыть ее в том смысле, что не можем «объяснить», как она работает. Мы просто расска­жем вам, как она работает. Рассказывая об этом, мы познакомим вас с основными особенностями всей квантовой механики.

§ 2. Опыт с пулеметной стрельбой

Пытаясь понять квантовое поведение электронов, мы сопо­ставим его с привычными нам движениями обычных частиц, похожих на пулю, и обычных волн, похожих на волны на воде. Сперва мы займемся стрельбой из устройства, схематически показанного на фиг. 37.1. Это пулемет, выпускающий целый сноп пуль. Он не очень хорош, этот пулемет. При стрельбе его пули рассеиваются на довольно широкий угол, как это изображено на рисунке. Перед пулеметом стоит плита (броне­вая), а в ней есть две дыры, через которые пуля свободно проходит. За плитой расположен земляной вал, который «погло­щает» попавшие в него пули. Перед валом стоит предмет, кото­рый мы назовем «детектором». Им может служить, скажем, ящик с песком. Любая пуля, попав в детектор, застревает в нем. Если нужно, ящик открывают и все попавшие внутрь пули пересчитывают. Детектор можно передвигать взад и впе­ред (в направлении х). Этот прибор позволяет экспериментально ответить на вопрос: «Какова вероятность того, что пуля, про­никшая сквозь плиту, попадет в вал на расстоянии х от сере­дины?» Заметьте, что мы говорим только о вероятности, по­тому что невозможно сказать определенно, куда попадет оче­редная пуля. Пуля, даже попавшая в дыру, может срикошетить от ее края и уйти вообще неизвестно куда. Под «вероятностью» мы понимаем шанс попасть пулей в детектор, который установ­лен в х метрах от середины. Этот шанс можно измерить, подсчитав, сколько пуль попало в детектор за определенное время, а затем разделив это число на полное число пуль, попавших в вал за то же время. Или, полагая, что скорость стрельбы была одинакова, можно считать вероятность пропорциональной числу пуль, попавших в детектор за условленное время.

Фиг. 37.1. Опыт со стрельбой из пулемета.

Для наших целей надо вообразить немного идеализирован­ный опыт, когда пули не дают осколков и остаются целыми. Тогда мы обнаружим, что пули всегда попадают в детектор порциями: если уж мы что-то нащупали в детекторе, то это всегда целая пуля, а не половина и не четвертушка. Даже когда скорость стрельбы становится очень малой, все равно в детек­торе за определенное время либо ничего не накапливается, либо обнаруживается целое — непременно целое — число пуль. Стало быть, размер порции не зависит от скорости стрельбы. Мы говорим поэтому: «Пули всегда приходят равными порция­ми». С помощью нашего детектора мы измеряем как раз вероят­ность прихода очередных порций как функцию х. Результат таких измерений (мы, правда, пока еще не провели такого эксперимента и сейчас просто воображаем, каким будет резуль­тат) изображен на графике фиг. 37.1,в. Вероятность в нем от­ложена вправо, а х — по вертикали, согласуясь с движением детектора. Вероятность обозначена P12,, чтобы подчеркнуть, что пули могли проходить и сквозь отверстие 1, и сквозь отверстие 2. Вы, конечно, не удивитесь, что вероятность P12 близ середины графика велика, а по краям мала. Вас может, однако, смутить, почему наибольшее значение Р12 оказа­лось при х = 0. Это легко понять, если один раз про­делать опыт, заткнув дырку 2, а другой раз — дырку 1. В первом случае пули смогут проникать лишь сквозь дырку 1 и получится кривая P1(см. фиг. 37.1,б). Здесь, как и следо­вало ожидать, максимум P1 приходится на то х, которое лежит по прямой от пулемета через дырку 1. А если заткнуть дырку 1, то получится симметричная кривая Р2 распре­деление вероятностей для пуль, проскочивших сквозь отверс­тие 2. Сравнив части б и в на фиг. 37.1, мы получаем важный результат

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*