KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5a. Электричество и магнетизм

Ричард Фейнман - 5a. Электричество и магнетизм

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "5a. Электричество и магнетизм" бесплатно, без регистрации.
Перейти на страницу:

Фиг. 9.12.Струя воды с электри­ческим полем, созданным вблизи насадки шланга.

Вспышки следуют друг за другом нерегулярно, но существенно то, что возвраще­ние к начальным условиям всегда происходит примерно за 5 сек. Следовательно, в грозовой динамомашине течет ток при­мерно в 4 а. А это означает, что любая модель, придуманная для объяснения того, как грозовой вихрь генерирует электричество, должна быть очень мощной — это должна быть огромная быст­родействующая махина.

Прежде чем двинуться дальше, рассмотрим кое-что, почти наверняка не имеющее никакого отношения к излагаемому пред­мету, но тем не менее само по себе любопытное, так как это де­монстрирует влияние электрического поля на водяные капли. Мы говорим, что это может и не иметь отношения, потому что связано с опытом, который можно проделать в лаборатории со струйкой воды и который показывает довольно сильное действие электричества на капельки. В грозе же нет никаких водяных струй; там просто имеется туча сконденсированного льда и ка­пель воды. Так что вопрос о механизмах, действующих в грозе, по всей вероятности, никак не связан со всем тем, что вы увидите в том простом опыте, который мы хотим описать. Насадите на водопроводный кран шланг с суженным концом и направьте струю воды из него под крутым углом (фиг. 9.12). Вода забьет тонкой струйкой и, вероятно, начнет разбрызгиваться мелкими капельками. Если поперек струи навести электрическое поле (скажем, заряженной палочкой), то форма струи изменится. При слабом электрическом поле вы увидите, что струя разби­вается на несколько больших капель, а при сильном поле струя разбрызгивается на много-много мельчайших капелек, гораздо более мелких, чем прежде. У слабого электрического поля есть тенденция воспрепятствовать дроблению струи на капли, а сильное, напротив, стремится раздробить поток.

Эти эффекты, по всей видимости, можно объяснить следую­щим образом. Когда из шланга бьет вода и мы приложили по­перек небольшое поле, то одна сторона струи может зарядиться чуть-чуть более положительно, а другая — чуть-чуть более отрицательно. И потом, когда струя дробится, капли с одной стороны струи могут стать положительно заряженными, а с дру­гой — отрицательно заряженными. Они начнут притягиваться и захотят сливаться в более крупные, чем прежде, капли. Струя не будет сильно дробиться. Если же поле увеличить, то заряд на каждой отдельной капле станет очень большим, и сам заряд будет стремиться измельчать капли (из-за их отталкивания). Каждая капелька разделится на более мелкие (и тоже заряжен­ные), они начнут отталкиваться, и посыплются брызги. Итак, при нарастании поля струйка дробится все мельче. Единствен­ное, что нам хотелось бы подчеркнуть,— это что при некоторых обстоятельствах электрическое поле может сильно сказываться на каплях. Точный механизм того, что происходит в грозе, не­известен, и совсем не обязательно связывать его с только что описанным. Мы включили это описание лишь для того, чтобы вы оценили сложность явлений, которые могут играть роль. На самом деле ни у кого из ученых нет теории, основанной на таком представлении.

Мы хотели бы привести две теории, изобретенные для объяс­нения разделения зарядов в грозе. Обе они основаны на пред­ставлении о том, что на падающей частице должен существовать один заряд, а в воздухе — противоположный. Тогда при движе­нии падающей частицы (воды или льда) сквозь воздух возникает разделение электрических зарядов. Вопрос только в том, отчего начинается электризация? Одна из старейших теорий — это теория «дробления капель». Кто-то когда-то обнаружил, что если в потоке воздуха капли дробятся на части, то сами они за­ряжаются положительно, а воздух — отрицательно. У этой тео­рии есть несколько недостатков, самый серьезный из которых — что знак получается не тот. Кроме того, в большей части гроз умеренного пояса, сопровождаемых молниями, осадки на боль­ших высотах бывают не в виде воды, а в виде льда.

Из только что сказанного следует, что если б мы могли пред­ставить себе способ сделать так, чтобы верх и низ капли были наэлектризованы по-разному, и если б мы усмотрели какой-то резон для капель разбиваться в быстром потоке воздуха на не­равные части — большую впереди, а меньшую позади (ну, ска­жем, из-за движения сквозь воздух или из-за чего-то подобно­го), то и у нас появилась бы своя теория (отличная от всех из­вестных!). Тогда из-за сопротивления воздуха крупные капли при падении отставали бы от мелких и вышло бы разделение зарядов.

Фиг. 9.13. Теория Ч. Вильсона о разделении зарядов в грозовой туче.

Как видите, можно измышлять любые возмож­ности.

Одна из самых остроумных теорий, во многом более удовлет­ворительная, чем теория дробящихся капель, принадлежит Вильсону. Описывая ее, мы, как и сам Вильсон, будем говорить о каплях, хотя все это относится в равной мере и ко льду. Пусть у нас имеется водяная капелька, падающая в электрическом поло напряженностью 100 в/м к отрицательно заряженной земле. У капли появится наведенный дипольный момент — положи­тельный заряд внизу, отрицательный наверху (фиг. 9.13). Кро­ме этого, в воздухе имеются «ядра», о которых мы уже говори­ли,— большие неторопливо движущиеся ионы. (Быстрые ионы не окажут здесь заметного влияния.) Предположим, что на своем пути вниз капля приблизилась к большому иону. Если он сам положителен, то положительный заряд низа капли оттолк­нет его, и он отойдет в сторону. Так что, собственно, капля даже не соприкоснется с ним. Если же ион приблизится к капле свер­ху, он может притянуться к ней. Но капля падает сквозь воздух, и воздух проносится мимо нее вверх, унося с собой ионы (если только они движутся достаточно медленно). Так что положи­тельные ионы не успевают коснуться верхушки капли. Все это относится, как видите, только к крупным, малоподвижным ионам. Положительные ионы такого сорта не смогут соприкасать­ся ни с нижней, ни с верхней поверхностью летящей капельки. Но когда крупные, медленные, отрицательные ионы входят в соприкосновение с каплей, она их притягивает к себе и захва­тывает. На капле накапливается отрицательный заряд (знак за­ряда определяется исходной разностью потенциалов всей Земли и получается как раз тот, какой нам нужен). Отрицатель­ный заряд будет перенесен каплями в нижнюю часть тучи, а положительные ионы, брошенные по дороге, будут сдуты к ее вер­хушке различными восходящими потоками. Теория выглядит довольно мило и, во всяком случае, дает правильные знаки.

К тому же она не зависит от того, град ли у нас или капли дож­дя. Мы увидим, когда будем изучать поляризацию диэлектри­ков, что с льдинками должно происходить то же самое. У них тоже в электрическом поле будут появляться на концах поло­жительные и отрицательные заряды.

Однако и эта теория оставляет какие-то неясности. Во-пер­вых, суммарный заряд грозы очень велик. Довольно быстро весь запас больших ионов израсходуется. Вильсон и другие вынуждены были предположить, что существуют добавочные источники больших ионов. Как только начинается разделение зарядов, развиваются очень сильные электрические поля, и в этих полях могут быть места, где воздух ионизуется. Если там имеется сильно заряженная точка или любой небольшой объект наподобие капли, то они могут сконцентрировать вокруг себя поле, достаточно большое для того, чтобы возник «кистевой разряд». Когда имеется достаточно сильное поле, скажем по­ложительное, то электроны будут попадать в это поле и успе­вать набирать между столкновениями большую скорость. Она будет такой высокой, что, попадая в атомы, электроны будут срывать атомные электроны с их оболочки, оставляя позади себя положительные ионы. Эти новые электроны тоже наберут ско­рость и, столкнувшись, породят еще больше новых электронов. Произойдет своего рода цепная реакция, или лавина, вызываю­щая быстрое накопление ионов. Положительные заряды оста­нутся невдалеке от своих прежних мест, так что чистый эффект состоит в распределении положительных зарядов в области вокруг исходной точки. При этом, конечно, сильное поле исчез­нет и процесс замрет. Таков характер кистевого разряда. Не исключено, что поля в "грозовой туче могут достичь такой вели­чины, что сколько-то там кистевых разрядов действительно возникнет; могут также быть и другие механизмы ионизации, включаемые, едва начнется гроза. Но никто точно не знает, как они действуют. Так что по-настоящему до конца происхождение молнии не понято. Мы знаем только, что молнии бывают от гро­зы (и знаем, конечно, что гром бывает от молнии — от тепловой энергии, высвобождаемой при вспышке молнии).

Но, по крайней мере, мы можем хоть отчасти понять происхож­дение атмосферного электричества. Из-за того, что во время гро­зы существуют воздушные течения, ионы и капли воды на льдин­ках — положительные и отрицательные заряды — разделяются. Положительные заряды уносятся вверх, к облачному куполу (см. фиг. 9.11), а отрицательные при ударах молнии скатываются на Землю. Положительные так и остаются на верхушке облака, входят в высокие слои хорошо проводящего воздуха и расходятся над всей Землей. В районах, где держится ясная погода положи­тельные заряды в этом слое медленно переводятся к земной по­верхности ионами в воздухе — ионами, образованными то ли космическими лучами, то ли всплесками волн и деятельностью человека. Атмосфера — это беспрерывно действующая электрическая машина!

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*