KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5a. Электричество и магнетизм

Ричард Фейнман - 5a. Электричество и магнетизм

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "5a. Электричество и магнетизм" бесплатно, без регистрации.
Перейти на страницу:

Но, с другой стороны, если мы возьмем воздушную ячейку, содержащую много водяных паров, то кривая ее адиабатичес­кого охлаждения будет совсем другой. При расширении и ох­лаждении этой ячейки водяной пар начнет конденсироваться, а при конденсации выделяется тепло. Поэтому влажный воздух остывает не так сильно, как сухой. Значит, когда воздух, влаж­ность которого выше средней, начнет подниматься, его темпе­ратура будет следовать кривой с на фиг. 9.8. Слегка охлаждаясь при подъеме, он все же окажется теплее окружающего его на этой высоте воздуха. Если имеется область теплого влажного воздуха и он почему-то начинает подниматься, то он все время будет оставаться легче и теплее окружающего воздуха и по-прежнему будет всплывать, пока не достигнет огромных высот. Вот тот механизм, который заставляет воздух в грозовой ячейке подниматься.

В течение многих лет именно так объясняли грозовую ячей­ку. А затем измерения показали, что температура облака на различных уровнях над Землей не так высока, как это следует из кривой с. Причина в том, что, когда «пузырь» влажного воз­духа всплывает, он уносит с собой воздух из окружающей среды и охлаждается им. Кривая «температура — высота» похожа больше на кривую d, которая гораздо ближе к первоначальной кривой а, нежели к с.

После того как описанная конвекция началась, поперечный разрез грозовой ячейки выглядит уже так, как показано на фиг. 9.9. Это так называемая «зрелая» гроза. В ней действует очень сильная тяга вверх, достигающая на этой стадии высот в 10—15 км, а иногда и выше. Грозовой купол с происходящей в нем конденсацией громоздится надо всей облачной грядой с быст­ротой, достигающей обычно 60 км/час. По мере того как водяной пар поднимается и конденсируется, возникают крохотные ка­пельки, которые быстро охлаждаются до температуры ниже нуля. Они должны замерзнуть, но делают это не сразу — они «переохлаждаются».

Фиг. 9.9. Созревшая грозовая ячейка.

Вода, да и другие жидкости обычно легко охлаждаются ниже своей точки замерзания, не кристаллизуясь, если только вокруг нет «ядер», которые необходимы, чтобы на­чалась кристаллизация. Только если имеются мелкие крошки вещества, наподобие кристалликов NaCl, капельки воды пре­вратятся в льдинки. Тогда равновесие будет приводить к испа­рению капель и росту кристаллов льда. Итак, в какой-то мо­мент начинается внезапное исчезновение воды и быстрое обра­зование льда. Кроме того, могут происходить прямые соударения водяных капелек и льдинок — столкновения, в которых пе­реохлажденная вода, прикоснувшись к кристаллику льда, мгно­венно сама кристаллизуется. Стало быть, в какой-то момент раз­вития облака в нем происходит быстрое накопление крупных частиц льда.

И когда они станут достаточно тяжелыми, они начнут па­дать сквозь восходящий воздух, ибо они стали слишком груз­ными, чтобы тяга могла их нести. Падая, они увлекут за собой немного воздуха. Начинается противоток воздуха — вниз. И легко понять, что, как это ни странно, раз уж противоток на­чался, то прекратиться он не сможет. Воздух теперь полным хо­дом помчится вниз!

Посмотрите: кривая d на фиг. 9.8 (истинное распределение температур по высоте облака) не так крута, как кривая с (от­носящаяся к влажному воздуху). Значит, когда начнет падать влажный воздух, его температура будет повышаться по кривой, соответствующей кривизне линии с, т. е. при достаточно сильном падении окажется ниже температуры окружающего воздуха (как это видно из кривой е). И в момент, когда это случится, он окажется плотнее окружающего воздуха, падение станет неот­вратимым.

Но вы скажете: «Уж не вечное ли это движение? Сперва го­ворилось, что воздух должен подниматься, а когда вы его под­няли, то одинаково убедительно принимаетесь доказывать, что ему положено падать». Нет, это не вечное движение. Когда по­ложение неустойчиво и теплый воздух вынужден подниматься, тогда, естественно, что-то должно его заместить. Не менее верно и то, что спускающийся холодный воздух был бы в состоянии энергетически заместить теплый воздух. Но поймите, что то, что спустилось вниз,— это уже не тот воздух, который был вна­чале. Давние рассуждения, в которых шла речь об изолирован­ном облаке, сперва подымавшемся, а затем спускающемся, содержали в себе какую-то загадку. Нужен был дождь, чтобы обеспечить спуск, а этот способ был мало правдоподобен. Но как только вы поняли, что к восходящему потоку воздуха приме­шан воздух, бывший вначале на той высоте, откуда началась тяга, термодинамические соображения покажут вам, что падение холодного воздуха, первоначально плававшего на больших высотах, тоже возможно. Это и объясняет картину активной грозы, представленную схематически на фиг. 9.9.

Фиг. 9.10, Поздняя фаза грозовой ячейки.

Когда воздух доходит донизу, из нижней части тучи начи­нает идти дождь. Вдобавок, достигнув земной поверхности, от­носительно холодный воздух растекается во все стороны. Значит, перед самой грозой начинается холодный ветер, предупреждаю­щий нас о предстоящей буре. Во время самой бури наблюдаются резкие и внезапные порывы ветра, облака клубятся и т. д. Но в основном сперва существует ток, текущий вверх, потом про­тивоток вниз — картина, вообще говоря, очень сложная.

В то же мгновение, когда начинаются осадки, возникает и противоток. И в тот же самый момент обнаруживаются электри­ческие явления. Но прежде чем описать молнию, мы закончим рассказом о том, что творится в грозовой ячейке через полчаса или, скажем, через час. Она выглядит так, как показано на фиг. 9.10. Тяга вверх прекратилась — больше нет теплого воз­духа, и поддерживать ее нечем. Какое-то время еще продолжа­ются осадки, последние капельки воды падают на землю, все становится спокойнее, хотя часть льдинок еще осталась в воздухе. На больших высотах ветры дуют в разные стороны, поэтому верх грозовой тучи обычно начинает принимать вид наковальни. Ячейке пришел конец.

§ 5. Механизм распределения зарядов

Теперь мы хотим обратиться к обсуждению самой важной для нас стороны дела — к возникновению электрических заря­дов. Разного рода эксперименты, включая полеты сквозь грозо­вой фронт (пилоты, совершающие их — истинные храбрецы!), выяснили, что распределение зарядов в грозовой ячейке напоминает изображенное на фиг. 9.11. Верхушка грозы заряжена положительно, а низ — отрицательно, за исключением неболь­шого участка положительных зарядов в нижней части тучи, при­чинившего немало забот исследователям. Никто не знает, поче­му он там появляется и насколько он важен, то ли это всего лишь вторичный эффект положительного дождя, то ли сущест­венная часть всего механизма. Если б этого не было, все выгля­дело бы значительно проще. Во всяком случае преимущест­венно отрицательный заряд внизу и положительный навер­ху — это как раз такое расположение полюсов батареи, которое может зарядить Землю отрицательно. Положительные заряды находятся в 6—7 км над Землей, где температура достигает -20°C,а отрицательные — на высоте 3—4 км, и температура там от 0 до -10°C.

Заряда нижней части тучи хватает на то, чтобы создать между ней и землей разность потенциалов в 20, 30 и даже 100 млн. в — несравненно больше, чем те 0,4 млн. в перепада, которые бывают между «небом» и Землей при ясном небе.

Фиг. 9.11. Распределение электричества в созревшей грозовой ячейке.

Эти огромные напряжения пробивают воздух и создают гигантский грозовой разряд. При пробое отрицательный заряд с нижней части тучи переносится зигзагами молнии на Землю.

А теперь мы в нескольких словах опишем строение молнии. Прежде всего имеется настолько большой перепад потенциалов, что воздух пробивается. Молния бьет между одной частью тучи и другой, или между одной тучей и другой, или между тучей и Землей. С каждой независимой вспышкой — с каждым ударом молнии, который вы видите, с небес низвергается 20—30 кулон электричества. Интересно, сколько же времени тратит туча на восстановление этих 20—30 кулон, уходящих с молнией? Это можно выяснить, измеряя вдали от тучи электрическое поле, вызываемое дипольным моментом тучи. При таких измерениях вы видите внезапный спад поля при ударе молнии, а затем экспо­ненциальный возврат к первоначальному его значению с ха­рактерной временной постоянной порядка 5 сек, немного меняю­щейся от случая к случаю. Значит, грозе достаточно 5 сек, чтобы восстановить весь свой заряд. Но это, конечно, не означает, что очередная молния ударит точно через 5 сек, потому что меняется и геометрия туч и другие факторы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*