KnigaRead.com/

Яков Гегузин - Капля

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Гегузин, "Капля" бесплатно, без регистрации.
Перейти на страницу:

Схема движения капли по наклонной плоскости


Имея в виду каплю, которая с поверхностью твердого тела соприкасается по кругу диаметром 2R, величину силы F2можно вычислить, следуя очевидной логике. Мысленно сместим каплю как целое на некоторое расстояние х. При этом будет выполнена работа (или затрачена энергия), равная произведению площади, на которой жидкость ото­рвалась от твердого тела, на величину Δα. Легко сооб­разить, что эта площадь равна 2Rxи, следовательно, вы­полненная работа А = 2RΔαx. А так как работа равна произведению силы F2на путь х, то F2= 2RΔα. Может возникнуть вопрос: почему учитывается затрата энергии на отрыв тыльной части капли от поверхности твердого тела и не учитывается выигрыш энергии вследствие «на­бегания» лобовой части капли на эту поверхность? Дело в том, что энергия, выигранная при «набегании», не исполь­зуется для облегчения отрыва. Она просто рассеивается, быть может, чуть-чуть нагревая каплю. Идущему по бо­лоту не легче вытаскивать правую ногу из трясины из-за того, что левая в это время легко туда проваливается.

Чтобы капля поползла по наклонной поверхности, необ­ходимо выполнение условия: F1 >F2, или mgsin φ>2RΔα. Учтя, что оконное стекло наклонено по отношению к линии горизонта под углом φ = 90°, а это означает, что sin φ = 1, легко придем к заключению, что по стеклу поползут лишь те капли, масса которых удовлетворяет условию:

т >2RΔα /g

Для простоты предположим, что на поверхности гори­зонтально расположенного стекла капля имеет форму полусферы. В этом случае ее масса

т = 2/3.πR3ρ ≈ 2R

(ρ — плотность жидкости капель). Имея это в виду, из пре­дыдущего соотношения легко получим следующий резуль­тат: по поверхности оконного стекла поползут капли, радиус которых удовлетворяет условию:

R> (Δα / ρg)1/2

Изложенные соображения и простые формулы дают воз­можность понять многое из того, что происходит во время дождя на оконном стекле. Во-первых, становится ясно, что движущаяся капля будет за собой оставлять след при ус­ловии, если величина Δα >2αж. В этом случае капле выгоднее смещаться по оставляемому на стекле жидкому слою, чем оголять твердую поверхность. Величину Δα мы сравниваем с величиной 2αж потому, что при отрыве жид­кой капли от жидкого слоя образуются две поверхности жидкости. Если же величина Δα окажется меньшей, чем 2αж, капли будут скатывать­ся по стеклу, не оставляя за собой влажного следа.

 

Водяные капли, ползущие по оконному стеклу


На сухом, точнее, на почти сухом стекле окна капли ос­тавляют след. Это означает, что в последней формуле вме­сто Δα мы можем писать 2αж. Для воды αж = 70 эрг/см2, и потому по оконному стек­лу будут скатываться капли, радиус которых больше 2 мм. Посмотрите во время дож­дя на окно и вы убедитесь, что дело именно так и обстоит.

Жидкая дорожка, остаю­щаяся за движущейся кап­лей, долго не живет и пре­вращается в цепочку мелких капель. Этот процесс абсолют­но аналогичен распаду струи на капли. Мы с ним уже встречались, когда обсужда­ли появление капель-сател­литов из тонкой перемычки, соединяющей падающую кап­лю с тающей сосулькой, на конце которой она родилась.

Очень много любопытно­го в поведении дождинок на оконном стекле связано с тем, что все время на нем появляются новые капли. Некоторые из них — новые дожде­вые капли, а некоторые — маленькие капельки, возник­шие из распадающегося следа, оставляемого движущими­ся большими каплями.

Описать словами, что происходит на оконном стекле с дождинками, затея невероятно трудная: никакими словами не передать огромного разнообразия происходящих со­бытий. В лаборатории мы сняли об этом фильм. И назвали его так же, как называется этот очерк,— «Дождь на оконном стекле». Чтобы отчетливее запечатлеть все про­исходящее, устроили «чернильных!» дождь: воду слегка подкрасили чернилами и направили капли на вертикаль­но стоящее стекло.


Глицериновые дожди и глицериновые капели


Рассуждения по схеме «что было бы, если бы» иногда приводят к любопытным выводам. Попробуем по такой схеме обсудить вопрос, что было бы, если бы дожди были гли­цериновыми. И капели были бы глицериновыми. И реки были бы глицериновыми. Чтобы фантазия о глицериновых дождях и капелях не была беспочвенной, мы в лаборатории сняли два фильма: один — о глицериновом дожде над глицериновой рекой, другой — о глицериновой капели.

Фильм о дожде над рекой снимался так. В прозрачную кювету наливали глицерин. На его поверхность из пипет­ки падали отдельные глицериновые капли. Скоростная кинокамера была так ориентирована, чтобы можно было заснять момент приближения капли к поверхности глице­рина, ее падение на поверхность и процессы, которые про­исходят от момента падения капли на поверхность до пол­ного успокоения поверхности.

В полете глицериновая капля себя ведет спокойнее во­дяной. При размере приблизительно 1—2 мм она имеет форму почти сферическую, практически не меняющуюся во время полета. В момент падения на поверхность глице­рина капля возмущает ее, подобно тому как водяная капля возмущает поверхность воды. Под каплей образуется ча­ша или, точнее говоря, коническое углубление. Вокруг чаши возникает берег в виде выпуклости, обрамляющей чашу. Эта чаша, однако, ли­лию не напоминает, так как она не обрамлена всплеска­ми — лепестками. В следую­щий момент берег начинает опадать, а чаша плавно сгла­живается. И все. Никакой лилии, никакого серебряного гвоздика, никакой алмазной шляпки — ничего, что наблю­дается при падении водяной капли на водную гладь.

 

Падение глицериновой капли на по­верхность глицерина


Теперь о фильме, в кото­ром заснята глицериновая капель. Глицериновую со­сульку мы не готовили, а по­ступили проще — с помощью кинокамеры наблюдали за образованием капель на кон­чике пипетки, из которой ка­пал глицерин. Вначале все происходит так же, как и с водой: медленно набухала крупная капля, вытягивалась перемычка, набухшая капля отрывалась и летела вниз. А затем все происходило не так, как в случае с водой. На оставшейся цилиндриче­ской перемычке возникают перетяжки, однако они не смыкаются. Отчетливо видна тенденция к распаду цилинд­рической перемычки на от­дельные капли-сателлиты, но что-то этому препятствует, и перемычка медленно втяги­вается в пипетку.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*