KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса

Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дэйв Голдберг, "Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса" бесплатно, без регистрации.
Перейти на страницу:

Философ Дэвид Альберт выдвинул «Гипотезу прошлого» как предположение, что в прошлом энтропия была ниже, чем в настоящем[34]. Если бы мы имели дело с компьютером, это означало бы, что мы начинаем с обнуления всех регистров, а потом добавляем данные. Если «Гипотеза прошлого» верна, то информация, закодированная в памяти — это реалистическая интерпретация произошедшего в прошлом. Если бы запись на диске компьютера начиналась с состояния высокой энтропии, у нас не было бы ни малейшего представления о том, что там настоящие воспоминания, а что — шум. Чтобы хоть как-то разбираться в прошлом, нам придется предположить, что и мы сами, и вселенная в более широком смысле в начале своего существования пребывали в состоянии крайне низкой энтропии.

А это подводит нас к крайне болезненному вопросу о ранних этапах существования вселенной…

Почему Вселенная сначала была такая скучная?

Вы сидите в горячей ванне, и сначала вам тепло и уютно, а потом события приобретают неприятный оборот — вода и воздух в ванной комнате приходят в равновесие, и вы ежитесь от холода.

То же самое можно сказать и про будущее вселенной. С течением времени тепло распределяется по вселенной все равномернее. Звезды выгорают, черные дыры в конце концов испаряются, везде царят холод и темнота. Конечным состоянием вселенной будет однородный, невероятно огромный и холодный океан из фотонов.

А как же наше происхождение? Поначалу вселенная была пестрая, состояла из крошечных участков тепла и холода. Однако горячие участки были всего лишь на 1/100 000 теплее, а холодные — лишь на 1/100 000 холоднее среднего.

На первый взгляд кажется, будто начало и конец вселенной очень похожи друг на друга, однако я утверждаю, что для конца вселенной характерна низкая энтропия, в то время как в начале энтропия была высокой. Откуда я это взял?

Все дело в гравитации. Начните с совершенно однородной вселенной и добавьте всего несколько сгустков там, где плотность чуть выше среднего. Оглянуться не успеете, как все близлежащее вещество начнет падать туда, и маленький сгусток станет сгустком побольше.

Энтропия — это просто количество способов, которыми можно перемешать систему так, чтобы на вид она осталась прежней. Как мы видели на примере радиоактивного распада, все хочет достичь состояния минимальной возможной энергии[35]. Когда частицы падают на сгустки, энергия превращается в тепло, а тепло — это всегда энтропия. Крошечные сгустки становятся все больше и больше, энтропия растет, и в результате получаются галактики, звезды и вы.

На ранних стадиях существования вселенной, когда все было упаковано гораздо плотнее, гравитация играла куда более важную роль, чем сегодня. Сейчас местная гравитация играет куда более важную роль, чем в далеком будущем. Для вселенной, где правит гравитация (как в начале времен), конфигурация минимальной энтропии — это идеально равномерное распределение. В будущем, когда гравитация утратит свою важность, идеально равномерное распределение — это конфигурация максимальной энтропии.

Влияние гравитации особенно хорошо заметно на примере распределения галактик. Начиная с 2000 года в рамках проекта «Слоановский цифровой небесный обзор» (Sloan Digital Sky Survey, SDSS) начали составлять карты почти всей близлежащей вселенной. Были сделаны снимки более ста миллионов галактик и измерены расстояния более чем до миллиона из них. И выяснилось, что налицо отчетливая структура — сгустки, волокна и пустые области (они так и называются — «пустоты», или «войды»). Однако если заглянуть в далекое прошлое (то есть взглянуть на очень далекие области, что одно и то же), окажется, что вселенная заполнена очень равномерно.



Это задача не из легких, она во многом связана с вопросом о том, почему ось времени направлена именно в таком направлении, а не в каком-нибудь другом. Возьмите вселенную в ее нынешнем виде и представьте себе кино, финалом которого было бы нынешнее положение дел. Если пустить кино задом наперед, все начнется с высокой энтропии, а закончится состоянием низкой энтропии. Иначе никак — законы физики, как мы уже убедились, обратимы во времени.

Сделаем следующий шаг и чуть-чуть изменим нынешнюю вселенную. Переставим там и сям про нескольку атомов. Если запустить задом наперед такую слегка измененную вселенную, то мы не придем к «началу» с равномерным распределением. Шансы на то, чтобы обнаружить в начале вселенной состояние низкой энтропии, оказались на диво малы — так же малы, как и вероятность, что вселенная будет развиваться в сторону состояния низкой энтропии.

В таком контексте трудно даже определить, что такое «маловероятно». Обычно, когда мы говорим, что что-то маловероятно, то имеем в виду, что есть какая-то цепочка событий, которая приведет к такому финалу, и основываем вероятность на событиях в прошлом. А у начала вселенной таких событий не было.

Вот такова в общем и целом «гипотеза прошлого». Можно даже представить себе, что это закон природы — не исключено, что у всех вселенных в момент зарождения энтропия низкая. Однако, честно говоря, это не очень утешает. Вопрос пока открыт, но в воздухе витают кое-какие идеи поинтереснее, чем «в самом начале вселенная была с низкой энтропией, потому что так сложилось».

Например, очень может быть, что наша вселенная — не первая. Многие ученые, в том числе физики из Принстона Пол Штейнхардт, Нил Тьюрок и их коллеги, предположили, что у вселенной случаются периоды расширения. В числе свойств так называемого «экпиротического сценария»[36] — то, что каждый данный участок вселенной со временем растягивается все сильнее и сильнее. В такой вселенной в целом энтропия не уменьшается, но по мере расширения отдельного участка может несколько разбавиться. Может быть, наша вселенная — всего лишь маленький клочок «множественной вселенной» или «мультиверса» куда больших масштабов, общая энтропия в которой была и остается колоссальной.

Иногда роль множественной вселенной рассматривают с иной точки зрения. Шон Кэрролл, физик из Калифорнийского технологического института, считает, что время — это явление, развивающееся на наших глазах. Он полагает, что течение времени в нашей вселенной и во всех других «пузырьках», составляющих множественную вселенную, — это и есть увеличение энтропии:

Стрела времени — это следствие не того, что «энтропия увеличивается при движении в будущее», а того, что «энтропия при движении времени в одну сторону совсем не такая, как при движении в другую сторону».

Другие ученые пошли даже дальше. Например, голландский ученый Эрик Верлинде утверждает, что даже фундаментальные на первый взгляд феномены вроде гравитации следуют из Второго закона термодинамики и теории струн.

Все это очень занимательно, однако в науке подобные идеи не становятся общепринятыми. Лично я отношусь к ним несколько скептически. В следующей главе мы как следует поговорим о множественной вселенной, однако сделать это нам будет непросто отчасти потому, что непонятно, удастся ли нам когда-нибудь подтвердить существование «пузырьковых вселенных» непосредственно данными наблюдений или экспериментов.

Лично я из всего множества доступных вариантов выбираю гипотезу, согласно которой начальное состояние вселенной характеризовалось низкой энтропией просто потому, что так уж вышло. Я уже упоминал, что когда говоришь о начале времен, понятие вероятности теряет смысл, так что когда кто-то говорит, насколько маловероятно, что в начале вселенной энтропия была низка, не вполне понятно, чего следовало бы ожидать. Очень хорошо об этом сказал Ричард Фейнман:

[Низкая энтропия в прошлом] … предположение вполне разумное, поскольку оно дает нам возможность объяснить факты, данные нашим опытом, и не стоит ожидать, что кто-то сумеет вывести этот опыт из чего-то более фундаментального.

В этом-то и беда: когда говоришь о первоначальных условиях, невозможно вывести никакие законы, поскольку, насколько мы можем судить, начало времен было ровным счетом одно. И хотя Т-симметрия требует, чтобы законы вселенной на микроскопическом уровне были обратимы во времени, нужно, чтобы на закате было всего одно-единственное, уникальное направление к рассвету. Неочевидная симметрия времени ведет нас обратно к началу единственной и неповторимой дорогой.

Глава третья. Космологический принцип

Из которой мы узнаем, почему ночью темно

Надеюсь, мне удалось донести до вас два обстоятельства. Первое — тупые вопросы, как правило, гораздо умнее, чем кажется на первый взгляд. Второе — очень важно помнить, что мы существа донельзя заурядные. Иначе легко подойти к опасной грани солипсизма. Откуда ты знаешь, что не семи пядей во лбу, если вся вселенная устроена так, чтобы ты сумел в ней зародиться?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*