Ричард Фейнман - 6. Электродинамика
(17.33)
где ж1 и ж 2называют коэффициентами самоиндукции двух катушек (или индуктивностями).
Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ж и ее
э. д. с. будет пропорциональна скорости изменения тока в катушке. Обычно считают, Что э. д. с. и ток одной катушки положительны, если они направлены одинаково. При этом условии для отдельной катушки
можно написать
(17.34)
Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».
Поскольку любая катушка обладает самоиндукцией, противодействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а). В такой цепи ток / связан с напряжением V соотношением
(17.35)
Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследовать его по принципу «одинаковые уравнения имеют одинаковые решения». Таким образом, если поставить в соответствие напряжение V от внешнего источника приложенной внешней силе F, а ток I в катушке скорости v частицы, то коэффициент индукции катушки жбудет соответствовать массе т частицы (фиг. 17,10, б).
Таблица 17.1 · СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ
§ 8. Индуктивность и магнитная энергия
Продолжая аналогию предыдущего параграфа, мы отметили в таблице, что в соответствии с механическим импульсом p=mv (скорость изменения которого равна приложенной силе) должна существовать аналогичная величина, равная
ж I, скорость изменения которой V. Разумеется, мы не имеем права говорить, что ж I — это настоящий импульс цепи; на самом деле это вовсе не так. Вся цепь может быть неподвижна и вообще не иметь импульса. Просто ж I аналогично импульсу mv в смысле удовлетворения аналогичным уравнениям.
Точно так же кинетической энергии 1/2mv2 здесь соответствует аналогичная величина 1/2ж 2. Но здесь нас ждет сюрприз. Величина 1/2aж I2 — действительно есть энергия и в электрическом случае. Так получается потому, что работа, совершаемая в единицу времени над индуктивностью, равна VI, а в механической системе она равна Fv — соответствующей величине. Поэтому в случае энергии величины не только соответствуют друг другу в математическом смысле, но имеют еще и одинаковое физическое значение.
Мы можем проследить это более подробно. В (17.16) мы нашли, что электрическая работа в единицу времени за счет сил индукции есть произведение э. д. с. и тока:
Подставляя вместо e ее выражение через токи из (17.34), имеем
(17.38)
Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток (что должно равняться накопленной энергии U), равна
(17.37)
Поэтому энергия, накопленная в индуктивности, равна 1/2ж I2.Применяя те же рассуждения к паре катушек, изображенных на фиг. 17.8 или 17.9, мы можем показать, что полная электрическая энергия системы дается выражением
(17.38)
В самом деле, начиная с тока I=0 в обеих катушках, можно вначале включить ток I1 в катушке 1, оставляя I2=0. Совершенная работа как раз равна l/2ж 1l12. Но теперь, включая I2, мы совершаем не только работу 1/2ж 2I22 против э. д. с. в цепи 2, но еще и добавочное количество работы —m I1I2, которая есть интеграл
от э. д. с. m(dIz/dt) в цепи 1, умноженный на теперь уже постоянный ток I1 в этой цепи.
Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I1 и I2. Прежде всего мы могли бы использовать принцип виртуальной работы, взяв вариацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индукции m. Тогда мы могли бы записать уравнение виртуальной работы в виде
Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоянными значения токов I1и I2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации индуцированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной работы, помня, что полная энергия — это взятая с обратным знаком энергия Uмех (то что мы называем «механической энергией»). Поэтому силу можно записать в виде
(17.39)
Тогда сила между катушками дается выражением
Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициентами самоиндукции ж 1 и ж 2двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно возрастут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с
таким же успехом записать в следующей форме:
(17.40)
Это просто алгебраическое преобразование. Эта величина должна быть всегда положительна при любых значениях I1 и I2. В частности, она должна быть положительна, когда I2 вдруг примет особое значение:
(17.41)
Но при таком значении I2 первое слагаемое в (17.40) равно нулю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что
Таким образом, мы доказали общее соотношение, что величина взаимной индукции m любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициентов самоиндукции (сам m может быть положителен или отрицателен в зависимости от выбора знаков для токов It и I2):
(17.42)
Соотношение между m и коэффициентами самоиндукции обычно записывают в виде
(17.43)
Постоянную k называют коэффициентом связи. Если большая часть потока от одной катушки проходит через другую катушку, то коэффициент связи близок к единице; мы говорим, что катушки «сильно связаны». Если катушки значительно удалены друг от друга или же все устроено так, что взаимное проникновение их потоков очень мало, коэффициент связи становится близок к нулю, а коэффициент взаимной индукции очень мал.
Для вычисления взаимной индукции двух катушек мы дали формулу (17.30), которая представляет собой двойной контурный интеграл по обеим цепям. Мы могли бы подумать, что та же формула применима и для вывода коэффициента самоиндукции одной катушки, если оба контурных интегрирования проводить по одной и той же катушке. Однако это не так, потому что при интегрировании по двум катушкам знаменатель r12 под знаком интеграла стремится к нулю, когда два элемента длины находятся в одной точке. Коэффициент самоиндукции, получаемый из этой формулы, оказывается бесконечным. Происходит это потому, что формула наша — приближенная, и справедлива она только для поперечных сечений проводов в обеих цепях, малых по сравнению с расстоянием от одной цепи до другой. Ясно, что это приближение для отдельной катушки не годится. На самом деле оказывается, что индуктивность отдельной катушки стремится логарифмически к бесконечности, когда диаметр ее проволоки становится все меньше и меньше.
Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнитную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов: