KnigaRead.com/

Ричард Фейнман - 9. Квантовая механика II

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "9. Квантовая механика II" бесплатно, без регистрации.
Перейти на страницу:

Но обратите внимание, что (13.18) несимметрично по хmи хn, поскольку kk2, вообще говоря, различны.

Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока не­трудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:

И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет ре­шением системы и будет обладать по-прежнему энергией, давае­мой (13.19). Решение, которое нужно выбрать по требованиям симметрии,—просто сумма (13.18) и (13.23):

Теперь при данных kk2 амплитуда Сm,nне зависит от того, в каком порядке мы берем хmи хn;если мы случайно поставим хmи хnв обратном порядке, мы получим ту же амплитуду. И на­ше толкование уравнения (13.24) на языке «магнонов» тоже ста­нет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется дву­мя волновыми числами kk2. Наше решение выглядит как со­ставное состояние одной частицы с импульсом р1= k1/h и дру­гой частицы с импульсом р2=k2/h, но в этом состоянии нельзя сказать, где какая частица.

В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рас­сказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождест­венные бозе-частицы. Все амплитуды обязаны быть симметрич­ны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хmи хnпросто изменил бы знак аm,n, а это не в счет, это не имеет значения. Но ведь об­мен хmс хn ничего не меняет — все электроны кристалла оста­нутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой ар­гумент.

Наше обсуждение имело двойную цель: во-первых, расска­зать вам кое-что о спиновых волнах; во-вторых, продемонстри­ровать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом пока­зателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой , а другой . с амплитудой , и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных ампли­туд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению ампли­туд, есть сумма обеих энергий.

Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако сле­дует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от за­дачи. Например, пара электронов, добавленная к кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравне­нии, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях — с одинако­выми спинами и одинаковыми k. Амплитуда такого состояния нуль.

§ 4. Молекула бензола

Хотя квантовая механика снабжает нас основными закона­ми, определяющими строение молекул, эти законы, однако, удается точно применить лишь к самым простым соединениям. Поэтому химики разработали различные приближенные спосо­бы расчета некоторых из свойств сложных молекул. Мы хотим здесь рассказать, как химики-органики применяют приближе­ние независимых частиц. Начнем с молекулы бензола. Мы ее рассматривали с другой точки зрения в гл. 8 (вып. 8). Тогда мы воспользовались приближенным представлением молекулы в виде системы с двумя состояниями, базисные состояния которой показаны на фиг. 13.3. Имеется кольцо из шести углеродов, к каждому из которых приделано по водороду. По принятой схеме валентных связей необходимо допустить, что между поло­виной атомов углерода имеются двойные связи и что в низших энергетических условиях воз­никают две возможности, по­казанные на рисунке. Но, кроме этого, имеются и еще другие, более высокоэнерге­тические состояния. Когда мы в гл. 8 говорили о моле­куле бензола, мы пользова­лись только двумя состоя­ниями, а прочие забыли. И мы обнаружили, что энергия основного состояния молекулы не совпадала с энергией ни одного из нарисованных состояний; нет, она была ниже на величину, пропорциональную амплитуде переброса из одного такого состояния в другое.

А теперь мы хотим взглянуть на ту же молекулу с совершен­но иной точки зрения, применяя приближение другого рода. Обе точки зрения приведут нас к разным ответам, но когда мы усовершенствуем оба приближения, то придем к истине — к правильному описанию бензола.

Однако если не позаботиться об этих усовершенствованиях (что обычно и делают), то не нужно удивляться, что эти описа­ния не сойдутся. Мы по крайней мере покажем, что при новой точке зрения низшая энергия молекулы бензола оказывается ниже, чем у любой из структур с тремя двойными связями (см. фиг. 13.3).

Фиг. 13.3. Два базисных состоя­ния молекулы бензола, исполь­зовавшиеся в гл. 8.

Рассмотрим следующую картину. Представим себе шесть ато­мов водорода, связанных только одиночными связями (фиг. 13.4).

Фиг. 13.4. Бензольное кольцо, из которого убрали шесть электронов.

Мы убрали шесть электронов (поскольку каждая связь обоз­начает пару электронов), так что перед нами шестикратно ионизованная молекула бензола. Теперь посмотрим, что слу­чится, когда мы поодиночке вернем в молекулу всю шестерку электронов, считая, что каждый из них может свободно двигать­ся вокруг кольца. Допустим также, что все связи, показанные на фиг. 13.4, заполнены и не нуждаются в дальнейшем рассмотре­нии. Что происходит, когда мы возвращаем молекулярному иону его электрон? Он, конечно, может расположиться в любом из шести мест на кольце, соответствующих шести базисным со­стояниям. И у него будет некоторая амплитуда (скажем А) того, что он перейдет с одного места на другое. При анализе стационарных состояний обнаружатся несколько возможных уровней энергии. Это только при одном электроне.

Добавим еще один электрон. И сделаем теперь самое стран­ное предположение: то, что делает один электрон, не сказывается на том, что делает другой. На самом деле они, конечно, будут взаимодействовать; они отталкивают друг друга с помо­щью кулоновых сил, и, кроме того, их энергия, когда они по­падают в одно место, должна заметно отличаться от удвоенной энергии, когда они туда попадают поодиночке. Конечно, приб­лижение независимых частиц незаконно, когда мест только шесть, особенно когда в них хотят поместить шестерку электро­нов. Но, несмотря на это, химики-органики сумели многому научиться, делая именно такое приближение.

Прежде чем подробно рассчитывать молекулу бензола, возь­мем пример попроще — молекулу этилена. В нее входят только два атома углерода и по паре атомов водорода с каждой сторо­ны (фиг. 13.5).

Фиг. 13.5. Молекула этилена.

У молекулы есть одна «лишняя» связь между двумя атомами углерода, в которую входят два электрона. Уберем один из этих электронов; что мы получим? То, что оста­нется, можно будет рассматривать как систему с двумя состоя­ниями: оставшийся электрон может находиться либо возле од­ного атома, либо возле другого. И, как у всякой системы с двумя состояниями, допустимые энергии отдельного электрона могут быть равны либо Е0-А, либо Е0 (фиг. 13.6).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*