Пол Хэлперн - Коллайдер
Непростой задачей для выбравших более отвлеченный путь явилось найти общий язык с экспериментаторами. Вычисления в теории струн зачастую требуют известной сноровки и зависят от многих свободных параметров. В зависимости от их значений меняются предсказания. Кроме того, у струнной теории было несколько разных версий (в середине 90-х Эд Виттен и другие доказали их эквивалентность). Такое многообразие параметров и теорий приводило ученых в недоумение: что же тогда проверять на опыте? Да о чем речь - объекты настолько крохотные (атомное ядро - галактика по сравнению с ними), что нам вряд ли суждено их вскоре «увидеть».
К тому же от математических парадоксов в теории суперструн можно избавиться, если только поселить струну в пространстве десяти, а то и больше измерений. Чтобы увязать это с тем фактом, что люди видят только три пространственных и одно временное измерение, теоретики вспомнили об идее шведского физика Оскара Кляйна, предложенной им в 20-х гг. XX в. Они заставили шесть лишних измерений скрутиться в шарик, такой маленький, что мы его не замечаем. На бумаге это получалось отлично, но экспериментаторов оставляло ни с чем. Ссылаясь на невозможность экспериментальной проверки, критики теории струн - среди знаменитостей это Глэшоу и Ричард Фейнман - заговорили о ее зыбкости.
Сотрудники лабораторий несколько оживились, когда на свет появился более близкий к жизни вариант суперсимметрии - Минимальная суперсимметричная стандартная модель (МССМ). Ее в 1981 г. выдвинули Савас Димопулос из Стэнфордского университета и Говард Джорджи. Они расширили Стандартную модель за счет дополнительных полей, представив ее в виде, удобном для включения в будущую объединенную теорию. Среди этих полей есть и суперсимметричные двойники, которые можно надеяться обнаружить в эксперименте.
В окончательной теории, естественно, должна присутствовать гравитация. Но по сравнению с другими силами она очень слабая. Если прослеживать в прошлое историю Вселенной до той эпохи, когда гравитация могла выступать на равных со своими напарниками, то придется уйти до планковского момента времени, отстоящего от Большого взрыва на 10-43 секунды. Тогда безумно горячая Вселенная была настолько мелкой, что квантовомеханические принципы, описывающие самые маленькие природные системы, были справедливы и для гравитации. Одно мимолетное мгновение квантовый мир и общая теория относительности прожили в неравном браке, имя которому квантовая гравитация.
Если объединение всех природных сил происходило при таких высоких энергиях, участвовавшие в нем частицы должны были быть невероятно тяжелыми. Их масса, вероятно, превышает возможности БАК в квадриллион (1015) раз. Взаимодействуя с «хиггсом», частицы планковской массы так бы завысили его энергию, что вся Стандартная модель развалилась бы. В частности, в теории слабые силы настолько истощились бы, что мы их не смогли бы наблюдать.
Чтобы уйти от этих неприятностей, Димопулос и Джорджи, когда искали суперсимметричное описание единой теории поля, добавили в уравнения «нужные» члены. Последние скомпенсировали влияние слагаемых с большой массой и позволили держать бозон Хиггса в разумном диапазоне энергий. Побочный эффект этой процедуры - появление вместо одного «хиггса» целого семейства таких частиц, как нейтральных, так и заряженных, в том числе суперсимметричного партнера бозона, хиггсино.
Если какие-нибудь из легких суперсимметричных двойников будут зарегистрированы, они сильно помогут нам продвинуться в понимании того, что выходит за рамки Стандартной модели. Они позволили бы отдать предпочтение той или иной теории (МССМ или другим альтернативам) и зафиксировать значения свободных параметров (в МССМ их более ста). Но самое главное, это открытие дало бы нам возможность делать верные предположения о том, как должна себя вести теория струн (или другая теория объединения) при гораздо более высоких энергиях.
Впрочем, энергии, при которых теория струн работает в полную силу, сегодня недостижимы, а сама она предоставляет на выбор столько возможностей, что БАК вряд ли моментально ее подтвердит или опровергнет. В лучшем случае экспериментальные данные позволят более точно нащупать границы применимости этой теории. Скажем, обнаружение суперсимметрии не скажет решающего голоса в пользу теории струн, но может убедить ее сторонников, что они на правильном пути.
В числе тех, кто, затаив дыхание, ждет открытия SUSY, ученые, мучающиеся одним из интереснейших, если не самым интересным, вопросов современной науки: загадкой скрытой материи. Невидимая масса, разбросанная по Вселенной, давно лишила астрономов покоя. Дает о себе знать она только своим гравитационным притяжением. Например, звезды во внешних областях галактик двигаются немного не так, как можно было бы ожидать. Тайна темной материи - одна из мучительнейших головоломок астрономии. Некоторые ученые полагают, что ее решение может быть хоть и весомым, но невидимым - суперсимметричными частицами-двойниками. Кто знает, не набит ли наш вселенский шаттл суперсимметричным грузом? Возможно, недалек тот день, когда самый высокоэнергичный прибор в мире доберется до ускользающего от нашего глаза природного фрахта.
Нечего и думать разгадать все эти загадки без столкновений частиц высоких энергий, тщательно отслеживаемых хитроумными детекторами, которые определяют свойства массивных осколков. Эти методы уходят корнями в прошлое. Бомбардировка частицами для исследования внутренней структуры материи начала применяться более века назад. Первой в 1909 г. под удар себя подставила золотая фольга. Приборы, правда, в то время были намного проще.
Тогда ученых интересовало устройство атома. О его внутренней структуре было известно очень мало, пока в игру не вступили бомбардирующие частицы. Нельзя расколоть кокос пальмовым листом, для этого как минимум нужна добротная киянка и жесткие и меткие удары. А вот атом под силу только специальной кувалде, крепко сжимаемой в умелых руках.
На золотых приисках. Эксперименты Резерфорда по рассеянию альфа-частиц
Теперь я знаю, как выглядит атом!
Эрнест Резерфорд, 1911 г.
Однажды в фермерской глубинке той страны, что маори называют Аотеароа, Страна Длинного Белого Облака, юный поселенец копал картошку. С завидным упорством парень лопатой вгрызался в землю, добывая урожай, который помог бы его семье пережить трудные времена. Вряд ли он там надеялся найти золотые самородки - в отличие от других частей Новой Зеландии, его район не славился приисками, - однако ему было уготовано золотое будущее.
Эрнест Резерфорд, которому было суждено первому заглянуть в недра атома, родился в семье первых переселенцев в Новую Зеландию. Его дедушка Джордж Резерфорд, колесный мастер из шотландского Данди, приехал в колонию Нельсон на окраине Южного острова, чтобы помочь построить лесопилку. Когда она была готова, Резерфорд-старший перевез семью в поселок Брайтуотер (ныне Спринг-Грув) к югу от Нельсона, в долине реки Вайроа. Там сын Джорджа Джеймс, выращивавший лен и тем зарабатывавший себе на жизнь, взял в жены английскую эмигрантку Марту, которая и родила Эрнеста 30 августа 1871 г.
В нельсонской школе и позже в Кентерберийском колледже в Крайстчерче, самом крупном и самом английском городе на Южном острове, Резерфорд показал себя прилежным и способным учеником. Один из однокашников будущего ученого запомнил его как «непосредственного, искреннего, простого и очень приятного молодого человека, который хоть и не был вундеркиндом, но если уж видел цель, то сразу схватывал главное»11.
Эрнест Резерфорд (1871-1937), отец ядерной физики.
Ловкие руки Резерфорда творили чудеса с любым механическим прибором. Юношеские увлечения экспериментатора хорошо подготовили его к тонким манипуляциям с атомами и атомными ядрами. Со сноровкой, достойной хирурга, он разбирал часы, создавал действующие модели водяных мельниц и даже смастерил любительскую камеру, чтобы делать снимки. В Кентербери, узнав об электромагнитных явлениях, открытых в Европе, он загорелся целью соорудить собственную установку. Следуя Герцу, он собрал радиопередатчик и приемник, предвосхитившие изобретение беспроводного телеграфа Маркони[12]. Резерфорд продемонстрировал, что радиоволны могут распространяться на большие расстояния, проходить сквозь стены и намагничивать железо. Его оригинальные опыты дали ему возможность претендовать на место в английском Кембридже.
Так совпало, что в год, когда Резерфорд появился на свет, в Кембридже была организована новая физическая лаборатория, первым директором которой стал Максвелл. Кавендишская лаборатория, названная. так в честь блестящего физика Генри Кавендиша[13](он, кстати, кроме прочего, первым выделил водород как химический элемент), превратилась в мировой центр атомной физики. Она расположилась на улочке Фри-Скул-Лейн, недалеко от центра прославленного университетского городка. Сам Максвелл руководил постройкой и подбирал оборудование для первой в мире физической исследовательской лаборатории. После смерти Максвелла в 1879 г. кресло директора занял другой известный физик, лорд Рэлей. А в 1884 г. бразды правления взял в свои руки неподражаемый Дж. Дж. (Джозеф Джон) Томсон.