KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Айзек Азимов - Нейтрино - призрачная частица атома

Айзек Азимов - Нейтрино - призрачная частица атома

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Нейтрино - призрачная частица атома" бесплатно, без регистрации.
Перейти на страницу:

Но даже электростатическая единица чрезвычайно велика для измерения заряда одного электрона. Впервые с достаточной точностью заряд электрона измерил в 1911 году американский физик Роберт Эндрюс Милликен. Он оказался равным примерно половине миллиардной доли электростатической единицы. Согласно последним измерениям, заряд электрона составляет 4,80298·10-10 электростатических единиц. Чтобы не пользоваться такой неудобной дробью, приняли электрический заряд электрона равным —1, где знак минус означает отрицательный заряд. Любой электрон, участвует ли он в электрическом токе или принадлежит атому какого-либо элемента, имеет заряд, точно равный -1, независимо от точности наших самых чувствительных инструментов.

Простейшее атомное ядро, т. е. ядро атома водорода имеет электрический заряд +1. Насколько позволяют судить наиболее чувствительные приборы, положительный заряд ядра водорода точно равен отрицательному заряду электрона (хотя, конечно, противоположен по знаку). Более тяжелые атомные ядра имеют большие положительные заряды, которые обязательно выражаются целым числом. До сих пор, по крайней мере, не обнаружили какого-либо дробного заряда, положительного или отрицательного.

Атомы каждого элемента имеют характерный ядерный заряд, отличный от заряда атомов других элементов. Например, все атомы водорода имеют ядерный заряд +1, все атомы гелия +2, все атомы углерода +6, все атомы урана +92. Этот ядерный заряд называется атомным номером.

Изотопы отличаются друг от друга массовым числами, но тем не менее они идентичны по атомному номеру и являются атомами одного и того же элемента. Существуют как атомы с ядерным зарядом +1 и массовым числом 1, так и атомы с ядерным зарядом +1 и массовым числом 2. Оба типа относятся к атомам водорода. Их называют водород-1 или водород-2, или 1Н1и 1H2, где индекс вверху справа — массовое число, индекс внизу слева— атомный номер. Таким же образом два изотопа урана записывают 92U238 и92U235.

Поскольку речь дальше будет идти о сохранении электрического заряда, я буду подчеркивать его количество, обозначая любой изотоп атома урана как U+92.

Оба изотопа урана радиоактивны. Каждый распадается, излучая α-частицу и превращаясь в атом тория. Атомный номер тория 90, а α-частица, являющаяся ядром атома гелия, имеет атомный номер 2. Тогда можно записать:

U+92→ Th+90 + He+2.

Начальное атомное ядро имело заряд +92, а два конечных ядра +90 и +2, т. е. в общей сложности +92. Это частный случай общего правила. Атом с атом номером х, излучив α-частицу, всегда превращается в другой атом с атомным номером х—2. Исключений никогда не наблюдали. Следовательно, в случае излучения α-частицы закон сохранения электрического заряда выполняется.

Применим ли закон сохранения электрического заряда к излучению атомным ядром β-частицы? Эта частица представляет собой электрон, который обозначается e-1, так как электрон имеет заряд -1.

Рассмотрим далее поведение изотопов тория, образовавшихся при распаде урана. Они не очень распространены в природе, поскольку, в свою очередь, быстро распадаются. При этом излучается β-частица и образуется изотоп элемента протактиния, который имеет атомный номер 91 и обозначается символом Ра. Сосредоточив внимание на электрическом заряде, можно записать

Th+90 → Pa+91 + e-1.

Снова наблюдаем сохранение электрических зарядов.

Атом с атомным числом х, излучив β-частицу, всегда превращается в другой атом с атомным числом х+1. Исключений из этого правила также не наблюдали. Значит, закон сохранения электрического заряда справедлив и для излучения β-частицы.

Атом, излучающий γ-лучи, не меняет в процессе излучения атомного номера, так как фотон γ-лучей не несет заряда.

Короче говоря, оказалось, что закон сохранения электрического заряда выполняется при любой ядерной реакции.

Строение ядра

Хотя вопрос об излучении β-частицы казался окончательно выясненным, поскольку закон сохранения электрического заряда выполнялся, физики продолжали свои исследования. Для них оставалось загадкой, как положительно заряженное ядро способно испускать отрицательно заряженную частицу.

Тот простой факт, что атомное ядро испускает α- и β-частицы, сам по себе свидетельствует о том, что ядро состоит из еще более мелких частей и, по крайней мере, одна из них должна нести положительный электрический заряд.

Почти десять лет после открытия электрона физики подстерегали некую положительно заряженную частицу, аналогичную отрицательно заряженному электрону. Но поиски не увенчались успехом. Самая маленькая положительно заряженная частица, которую удалось обнаружить, оказалась ядром водорода-1, и ее обозначили 1H1. Электрический заряд ее был минимальным, т. е. в точности равнялся заряду электрона, но имел противоположный знак. Однако масса этой частицы была в 1836,11 раз больше массы электрона.

К 1914 году Резерфорд убедился, что ядро водорода является самой легкой положительно заряженной частицей, присутствующей во всех атомных ядрах. Но почему она гораздо тяжелее отрицательно заряженного электрона (хотя обе частицы имеют одинаковые заряды противоположного знака), — он не мог объяснить. И никто не смог, ни тогда, ни теперь. Это остается одной из нерешенных проблем ядерной физики по сей день.

В 1920 году Резерфорд предложил назвать эту положительно заряженную частицу протоном от греческого слова protos — первый, так как из-за своей большой массы он казался первой, т. е. самой важной, среди субатомных частиц. Масса протона по атомной шкале равна 1,00797, и в большинстве случаев без большой погрешности ее принимают за единицу.

Ядро водорода-1 состоит из одного протона. Казалось, все другие ядра должны содержать два или более протонов, но вскоре выяснилось, что атомные ядра (не водорода-1, а другие) не могут состоять только из протонов. Протон имеет электрический заряд +1 и массовое число, примерно равное единице, и если бы ядра состояли только из протонов, их атомный номер должен был равняться атомному числу. Но это верно только для водорода-1. Массовые числа других ядер больше их атомных номеров.

Рассмотрим, например, ядро азота с массовым числом 14. Если бы оно состояло только из протона, его электрический заряд был бы равен +14 и, следовательно, атомный номер был бы тоже 14. В действительности же электрический заряд ядра азота +7 и ядро можно обозначить как 7N14. Что же происходит с остальными семью единицами заряда?

Сначала физики думали, что ответ заключается в наличии в ядре электронов. Если бы ядро азота содержало 14 протонов и 7 электронов, суммарная масса семи электронов была бы достаточно маленькой, чтобы ею пренебречь, зато электроны компенсировали бы половину положительных зарядов. В качестве побочного эффекта наличие ядерных электронов сказалось бы также на способности ядра излучать электроны в виде β-частиц. Эта модель строения ядра потерпела крах в вопросе о спине частицы.

Известно, что при движении заряженных частиц создается магнитное поле. В 1928 году английский физик Поль Дирак пришел к выводу, что заряженные частицы движутся даже тогда, когда кажется, что они находятся в покое. Лучше всего предположить, что такие частицы вращаются вокруг своей оси, т. е. имеют определенный момент количества движения. Если частица вращается, она должна обладать энергией, которая поглощается определенными порциями, или квантами. Это справедливо для всех вращающихся тел (даже для планет вроде Земли). Величина кванта, однако, так мала по сравнению с полной энергией вращения Земли, что если бы Земля получила квант или даже триллион квантов энергии вращения, никто ничего не заметил бы. Но если бы такой квант энергии получила субатомная частица, ее вращение заметно изменилось бы, так как для субатомной частицы квант очень велик. Вращение частицы нельзя обнаружить никакими измерениями, но можно показать, что значения спина частицы соответствуют только целому числу квантов энергии. Величина момента количества движения вращающейся частицы чрезвычайно мала. Поэтому была придумана специальная шкала, по которой спин фотона был принят равным единице, по этой шкале протон и электрон имеют спин 1/2 каждый. Момент количества движения бывает направлен по и против часовой стрелки. Протон или электрон могут вращаться в том или ином направлении и, следовательно, их спин равен либо +1/2, либо -1/2.

Рассмотрим систему, содержащую несколько таких частиц. Если справедлив закон сохранения момента количества движения, суммарный спин системы должен быть равен сумме спинов отдельных частиц. Пусть система состоит из четырех частиц — протонов или электронов, или тех и других вместе. Если каждая частица имеет спин +1/2 или -1/2, суммарный спин равен нулю или целой величине. Суммарный спин любой системы, содержащей четное число частиц, каждая из которых имеет спин + 1/2 или -1/2, всегда равен нулю или целому числу.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*