KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Айзек Азимов - Нейтрино - призрачная частица атома

Айзек Азимов - Нейтрино - призрачная частица атома

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Нейтрино - призрачная частица атома" бесплатно, без регистрации.
Перейти на страницу:

Какой массе эквивалентны фотоны? Для сравнения больше всего подходит масса электрона, равная 1/1836,11 массы ядра водорода и эквивалентная 0,51 Мэв, так как энергия, эквивалентная массе протона, значительно больше энергии даже самых коротковолновых фотонов γ-излучения. Энергия фотона видимого света в среднем равна 2,5 эв, следовательно, эквивалентная ей масса представляет собой лишь 1/200 000 массы электрона, т. е. без большой погрешности можно считать, что фотоны видимого света не имеют массы.

Эквивалентная масса фотонов возрастает по мере уменьшения длины волны излучения. γ-Излучение с длиной волны 2,4·10-10 см состоит из фотонов, масса которых равна массе электрона. Следовательно, корпускулярные свойства фотонов γ-излучения легко обнаружить прибором, используемым при изучении электронов.

Это было проделано в 1923 году американским физиком Артуром Холли Комптоном. Он обнаружил, что фотон рентгеновских лучей с эквивалентной массой, гораздо меньшей, чем у электрона, сталкиваясь с электроном, отскакивает от него рикошетом. Электрон получает энергию. а фотон теряет ее, как и в случае столкновения двух электронов. Более того, фотон ведет себя как частица, обладающая импульсом. При взаимодействии его с электроном выполняется закон сохранения импульса.

Так, еще раз была подтверждена корпускулярная природа света, обладающего и волновыми свойствами. Именно Комптон предложил назвать квант света «фотоном», используя суффикс «он», ставший отличительным признаком для названий субатомных частиц, после того, как двадцатью пятью годами раньше был открыт электрон.

Корпускулярные свойства фотонов γ-излучения выражены сильнее, чем фотонов рентгеновских лучей. Когда γ-кванты излучаются в процессе ядерной реакции, необходимо учитывать их импульс. Более того, фотон обладает спином, и следовательно, моментом количества движения. Поэтому, применяя законы сохранения импульса и момента количества движения к ядерным реакциям, надо учитывать импульс и момент количества движения фотона.

Хотя фотон γ-излучения и электрон эквивалентны по массе, между ними есть разница, так как эквивалентность не означает идентичность.

Рассмотрим, например, массу электрона, который может двигаться относительно наблюдателя с любой скоростью от 0 до 3·1010 см/сек. Масса электрона или любого материального тела при этом меняется со скоростью от минимального значения, когда тело покоится, до бесконечно большого, когда его скорость максимальна [12].

Масса тела, покоящегося относительно наблюдателя, называется массой покоя, и именно ее обычно имеют в виду, когда говорят просто «масса». Когда, например, говорят, что масса электрона равна 9,1091·10-28 г, всем понятно, что это масса покоя. Электроны часто сталкиваются, двигаясь со скоростями, равными или большими, чем 0,99 скорости света в вакууме, причем их массы в семь или более раз превышают массу покоя.

В вакууме фотон всегда летит со скоростью света относительно любого наблюдателя [13]. Это исходное положение специальной теории относительности Эйнштейна. Так как фотон никогда не покоится относительно какого-либо наблюдателя, нельзя измерить его массу покоя непосредственно.

Физикам удобно считать массу покоя фотона равной нулю, т. е. частицей без массы, хотя ему и приписывают эквивалентную массу.

Однако фотон — не единственная частица без массы. Нам встретятся еще частицы без массы, не являющиеся фотонами. Пока сделаем обобщение, что все частицы без массы, будь то фотоны или другие частицы, с момента их рождения и до момента поглощения летят со скоростью света.

Глава 5. Электрический заряд

Сохранение электрического заряда

В атомном мире существуют, насколько нам известно, три важных закона сохранения, которые выполняются как в повседневной жизни, так и в огромной окружающей нас Вселенной.

К ним относятся законы сохранения импульса, сохранения момента количества движения и сохранения энергии.

Все три закона устанавливают соотношения между массой и скоростью — хорошо знакомыми нам величинами. Но атом и образующие его частицы, оказывается, подчиняются еще и четвертому закону сохранения, касающемуся совершенно незнакомого нам явления. Уже в 600 году до новой эры, благодаря исследованиям греческого философа Фалеса Милетского, было известно, что натертая ископаемая смола — янтарь — обладает свойством притягивать легкие предметы. Теперь принято говорить, что натертый янтарь получает электрический заряд или «электризуется». Слово «электричество» произошло от греческого elektron — янтарь.

В 1773 году французский физик Шарль Франсуа Дюфе продемонстрировал существование двух разных видов электрического заряда, один из которых был обнаружен на натертом янтаре, а другой — на натертом стекле. Разница между двумя этими электрическими зарядами видна из следующего опыта.

Подвесим два маленьких кусочка пробки рядом на шелковых ниточках. К каждому из них прикоснемся куском электрически заряженного янтаря, при этом некоторая часть электрического заряда стечет в каждый из кусочков пробки. Шелковые нити, к которым они подвешены, больше не висят вертикально, а отклоняются под углом. Теперь пробки находятся друг от друга дальше, чем они были до получения заряда. То же самое случится, если обоих кусочков пробки коснуться электрически заряженными кусочками стекла.

Если, однако, одного куска пробки коснуться заряженным янтарем, а другого стеклом, оба кусочка притянутся друг к другу. В этом и заключалась разница, которая привела Дюфе к предположению о существовании двух видов электрического заряда. Возникло обобщение: одноименные электрические заряды отталкиваются, разноименные — притягиваются.

В сороковых годах XVIII века американец Бенджамин Франклин, человек широкого кругозора, начал эксперименты с электричеством. Он заметил, что если тела, несущего один вид заряда, коснуться телом, несущим равный по величине заряд другого знака, заряды нейтрализуют друг друга, и оба тела становятся электрически незаряженными. Как будто электрическая жидкость перелилась оттуда, где она была в избытке, туда, где ее не хватало. В результате в обоих местах установился какой-то средний уровень.

Франклин считал, что тело, содержащее электрическую жидкость в избытке, несет положительный электрический заряд, а тело, испытывающее ее недостаток, несет отрицательный электрический заряд. Он не мог сказать, какое тело содержит избыток, а какое недостаток, поэтому он произвольно принял заряд ненатертого стекла за положительный, а натертого янтаря — за отрицательный. Этих обозначений с того времени и придерживаются.

Последующие поколения физиков, изучавших поведение электрически заряженных тел, пришли к выводу, что суммарный электрический заряд замкнутой системы постоянен.

Действительно, когда натирают янтарь, электрический заряд не возникает из ничего. Если янтарь натирают рукой, отрицательный электрический заряд, полученный янтарем компенсируется точно таким же положительным зарядом, который получает рука. Сумма этих двух зарядов равна нулю. Когда электрический заряд с руки уходит в землю и растекается по всей земной поверхности, кажется, что он исчезает. Создается иллюзия «возникновения» заряда на янтаре. Мы рассмотрели уже аналогичные случаи с положительными и отрицательными импульсами или с моментами количества движения по и против часовой стрелки. Следовательно, можно сформулировать четвертый закон сохранения: сохранение электрического заряда.

Ядерные реакции и электрический заряд

Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома, заряжены отрицательно, а ядро в центре атома несет положительный электрический заряд. Конечно, сразу же возник вопрос о величине этих зарядов, прежде чем ответить, рассмотрим некоторые единицы заряда.

Общепринятой единицей электрического заряда является кулон (по имени французского физика Шарля Огюстена Кулона, определившего в 1785 году величину электрического заряда по измеренной силе притяжения и отталкивания его другими зарядами). В 60-ваттной лампочке каждые две секунды через любую точку нити накала проходит электрический заряд в один кулон. Гораздо меньше электростатическая единица заряда. Кулон равен 3·109 электростатических единиц.

Но даже электростатическая единица чрезвычайно велика для измерения заряда одного электрона. Впервые с достаточной точностью заряд электрона измерил в 1911 году американский физик Роберт Эндрюс Милликен. Он оказался равным примерно половине миллиардной доли электростатической единицы. Согласно последним измерениям, заряд электрона составляет 4,80298·10-10 электростатических единиц. Чтобы не пользоваться такой неудобной дробью, приняли электрический заряд электрона равным —1, где знак минус означает отрицательный заряд. Любой электрон, участвует ли он в электрическом токе или принадлежит атому какого-либо элемента, имеет заряд, точно равный -1, независимо от точности наших самых чувствительных инструментов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*