Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей
Неудивительно, что Гайзенберг воспринимал «конкурирующую фирму» в штыки, на научных собраниях выступал с обоснованной критикой, а в переписке не очень стеснялся в эпитетах, доходя чуть не до «отвратительная». Удивительно, однако, что «выявленные недостатки» шрёдингеровского подхода мало чему помешали!
Шрёдингер же не только «решил» атом водорода, но и сумел математически показать, каким образом из его подхода к квантовой теории воспроизводится весь подход Гайзенберга целиком, – по существу продемонстрировал, что эти два подхода математически эквивалентны друг другу, несмотря на радикальное различие в форме и вообще кажущуюся противоположность. В итоге оказалось, что по сути одну и ту же теоретическую схему открыли дважды – независимо и на двух различных языках, достаточно различных для того, чтобы поначалу выглядеть антагонистами. Это не самая частая ситуация в истории науки, а с учетом того, насколько абстрактные конструкции при этом использовались, вообще единственная. Заодно это было веским свидетельством в пользу только-только придуманного формализма квантовой механики. С тех пор у нас есть единая квантовая механика, хотя и бывает, что находится повод говорить о матричной механике или волновой механике (это Гайзенберг и Шрёдингер соответственно).
Непримиримость двух подходов закончилась их вынужденным примирением ввиду математической эквивалентности. А вот представления о природе реальности, стоящие за каждым из двух видов математического формализма, оставались различными. Различие взглядов уходило вглубь, до разногласий о том, из чего состоит мир и в каком отношении с миром находится наше знание о нем. При этом никуда не делась проблема, что шрёдингеровские волны – это не волны в пространстве.
Эйнштейн в одном своем письме отзывался о текущем состоянии дел в квантовой науке так: «Квантовая теория подверглась полной шрёдингеризации, из-за чего имеет много практических успехов». А затем продолжал: «Но это тем не менее не может быть описанием реального процесса. Здесь тайна».
Мы вернемся к уравнению Шрёдингера в главах 9 и 10. Тайна там действительно есть.
4
Что еще из-за вражды
Вражда, отбирающая свойства, в квантовом мире повсюду. Когда электрон на постоянной основе живет в атоме, его энергия там постоянна (и, как мы уже видели, далеко не произвольна). «Математика вражды» говорит, что из-за наличия определенного значения энергии у электрона в атоме не может быть никакого определенного положения в пространстве. Положение в пространстве – свойство, которое к нему там «не прикрепляется». У электронов в атоме, другими словами, просто нет свойства находиться в какой-либо точке пространства. Речь не о том, что они меняют свое положение с течением времени; нет, у них просто нет определенного положения ни в какой момент времени. А что со скоростью? Раз пространственное положение не определено, шанс, как кажется, появляется у его антагониста – скорости. Но со скоростью теперь враждует сама энергия электрона в атоме; она получает эту вражду в наследство от положения в пространстве, и четко определенное значение энергии становится запретом для любого значения скорости. Электронам в атоме не позавидуешь: ни положения, ни скорости, и шансы наглядно ответить на вопрос «Что они там делают?» стремительно тают.
Существование электрона как части атома – чудеса изворотливости в условиях запретов из-за квантовой вражды. Несмотря на «нечеловеческие условия», электрон в атоме все-таки сумел обзавестись в дополнение к определенной энергии еще и кое-каким подобием вращения. «Подобием» вот в каком смысле. Чтобы полностью описать, как вращаются привычные нам вещи (например, шлифовальный диск, велосипедное колесо или камень на веревке), нужно указать направление оси вращения и «степень раскрутки», численно выражающую, насколько трудно это вращение остановить (эта величина уже встречалась нам здесь под своим официальным названием «момент импульса»). Таким образом, чтобы задать вращение, как мы себе его представляем, требуются три величины, т. е. три числа: два задают направление оси, а еще одно – степень раскрутки.
В квантовом мире это невозможно. Электрону, выполняющему что-то вроде вращения в атоме, не удается обзавестись всеми тремя этими величинами. Проблема – в их отношениях между собой: они враждуют и поэтому не могут прикрепиться к электрону одновременно (хотя и не враждуют с энергией). Из-за этого электрон берет себе только две из трех, причем одна – это степень раскрутки. Из-за отпавшей третьей величины теряется идея оси вращения. Можно сказать, что у электрона в атоме есть атрибуты вращения: степень раскрутки и частичная информация об оси вращения, но они не составляют наглядного описания. Мы снова сталкиваемся с непредставимостью происходящего внутри атома – в данном случае с непредставимостью вращения, у которого нет оси. Это аналог, и даже «родственник», запрета на траектории (траектории у электрона в атоме, разумеется, тоже нет).
Но последствия вражды этим не ограничиваются: две величины, оставшиеся в качестве характеристики квантового вращения, могут принимать не какие угодно, а только дискретные значения. В частности, степень раскрутки принимает только значения, которые тоже нумеруются неотрицательными целыми числами. (Это до известной степени аналогично энергии электрона в атоме, но разрешенные значения степени раскрутки математически выражаются через эти числа иначе, чем разрешенные значения энергии выражаются через свой номер в списке.) Нельзя раскрутить «чуть сильнее» или «чуть слабее», а можно только перейти от одной определенной степени раскрутки к другой. Вращение в нашей квантовой вселенной, таким образом, всегда оказывается квантованным, т. е. дискретным по своим характеристикам; в продолжение сказанного в конце главы 2, все возможные степени раскрутки пропорциональны постоянной Планка ħ {12}.
Различные электроны в атоме берут себе различные дискретные порции этого неполноценного вращения, и с ними в атоме и существуют. Наименьшая «степень раскрутки» – нулевая, и про электроны, которым она досталась, можно сказать, что они не вращаются вообще ни в каком смысле; именно таково положение дел в атоме водорода (как бы ни намекала на обратное «планетарная модель атома»; она, как мы помним, неверная). Собственно говоря, если электрон в атоме взял себе первое из списка разрешенных значений энергии, то все его атрибуты вращения с необходимостью нулевые. Для энергии № 2 ситуация чуть более интересная: степень раскрутки может быть или нулевой, или же следующей в списке – отвечающей раскруточному числу 1. Для энергии № 3 имеется уже три возможности для раскруточного числа: 0, 1 или 2; для энергии № 4–0, 1, 2 или 3; и так далее. Каждое следующее значение раскруточного числа добавляет живости сюжету, потому что открывает все больше возможностей для второго атрибута вращения. Он тоже выражается целым числом, а точнее, целым числом, умноженным на постоянную Планка. При нулевой раскрутке оно тоже равно нулю; но при раскрутке 1 для него открываются возможности – ħ, 0, ħ, при раскрутке 2 – возможности –2ħ, –ħ, 0, ħ, 2ħ, и т. д. И это – почти все, что можно рассказать про жизнь электрона в атоме, с одним только важным уточнением, которое мы сделаем в главе 7.
Из-за вражды одних величин с другими мир находится в «напряженном» состоянии. В конструкции атома нет непрерывных параметров: и энергии электронов, и атрибуты вращения, которыми эти электроны обладают, описываются дискретными значениями из некоторых списков. Существовать может только то, что отвечает одному из пунктов списка; не бывает атома, у электронов которого эти величины слегка отличались бы от некоторых предписанных.