KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Владимир Скулачев - Рассказы о биоэнергетике

Владимир Скулачев - Рассказы о биоэнергетике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Скулачев, "Рассказы о биоэнергетике" бесплатно, без регистрации.
Перейти на страницу:

И все же какая-то фотоэлектрическая активность присуща и зрительному родопсину. Еще в 1964 году К. Браун и М. Мураками описали очень быстрый двухфазный сдвиг разности потенциалов на мембране фото-рецепторной клетки сетчатки при включении света. Первая фаза возникала за время короче микросекунды и могла быть связана только с самым первым участником фоторецепторной системы, то есть с родопсином. Вторая фаза развивалась в миллисекундной шкале. Она была направлена противоположно первой фазе. Физиологи не придали большого значения эффекту (он был назван ранним рецепторным потенциалом, сокращенно РРП) вследствие его малой амплитуды: даже при мощном освещении величина потенциала не превышала двух-трех милливольт.

Интерес к РРП возник вновь, когда было доказано, что функция бактериородопсина состоит в генерации потенциала и тока. В 1977 году М. Монтал сообщил о фотоэффекте при облучении тефлоновой пленки, покрытой животным родопсином. Величина потенциала по-прежнему была невелика.

Одновременно и независимо М. Островский и его коллеги из Института химической физики в Москве попытались применить к животному родопсину наш метод, использованный для регистрации электрического фотоответа бактериородопсина. Пористый фильтр пропитывали раствором фосфолипидов, затем, с одной стороны, добавляли фоторецепторные диски — плоские мембранные пузырьки, которыми заполнены клетки палочек сетчатки. Именно в мембране дисков сосредоточена большая часть фонда родопсина палочек. В присутствии ионов кальция диски подклеивались к фильтру, после чего включался свет.

Как показали измерения, в такой системе может быть получен значительный фотоэффект (порядка 20 милливольт). Правда, потенциал быстро падал во времени и через несколько секунд после включения света исчезал вовсе. Но такая динамика в общем-то неудивительна, если учесть, что на свету происходит необратимое обесцвечивание родопсина.

К сожалению, сам по себе факт генерации разности потенциалов под действием поглощаемого белком света еще недостаточен для вывода о том, что функция этого белка сводится к превращению световой энергии в электрическую. Например, американский биофизик X. Тьен описал фотоэлектрический эффект при облучении ультрафиолетом плоской фосфолипидной мембраны, сорбировавшей химотрипсин — пищеварительный фермент, не имеющий никакого отношения к процессам трансформации энергии света хотя бы потому, что он работает в полной темноте — в кишечнике.

По-видимому, свет вызывал перемещение каких-то заряженных групп в молекуле химотрипсина, что и приводило к генерации потенциала.

Фотоэффекты такого типа возникают в момент включения света и быстро исчезают в процессе освещения, поскольку в системе не происходит истинного переноса зарядов через мембрану и генерации постоянного тока. Неудивительно, что фотоэффект в экспериментах Тьена с химотрипсином был невелик, всего несколько милливольт.

В опытах Островского электрический ответ родопсина на освещение был в несколько раз больше, чем у Тьена. И все же сохранялась опасность артефакта «а lа Тьен».

Чтобы разобраться в этом деле, мы решили исследовать динамику образования потенциала зрительным родопсином в тех же условиях, которые были использованы применительно к бактериородопсину.

Опыт занимал два дня. Начинался он в лаборатории М. Островского, куда утром привозили с мясокомбината шестьдесят глаз только что забитых быков. Из глаз препарировали сетчатки, отделяли внешние сегменты клеток-палочек, а из этих сегментов получали фоторецепторные диски, в мембране которых локализован родопсин. На все это уходил день. Утром следующего дня в нашей лаборатории появлялся энергичный чернобородый человек с чемоданчиком. Его приход мы неизменно приветствовали с энтузиазмом.

- Гриша Каламкаров! С дисками! — кричал в коридоре первый, кто попадался на пути человеку с чемоданчиком.

Приход Каламкарова означал, что опыт состоится. В 434-ю комнату собирались его участники: Л. и А. Драчевы, А. Каулен.

Прежде всего плотно зашторивали окна и зажигали красные лампы. Родопсин боится белого света. Достаточно однажды осветить диски — и весь опыт пропал! Вот почему работа с животным родопсином внешне напоминает какое-то таинство, совершающееся в красном полумраке. Красный свет не поглощается родопсином и поэтому безопасен для него.

Каулен добавляет суспензию дисков в ячейку, разделенную на два отсека коллодиевой пленкой, предварительно пропитанной раствором фосфолипида в декане. Следуют два часа томительного ожидания: случайно натолкнувшись на коллодиевую пленку, диски прилипают к ней. Надо подождать, пока вся поверхность пленки покроется слоем дисков.

И вот наконец в дверях моего кабинета появляется громоздкая фигура Каулена. Я давно уже жду этого момента, поглядывая на часы: нетерпение перед опытом мешает слушать собеседника, расположившегося напротив меня уютно и, видимо, надолго.

— Владимир Петрович, начинаем, — говорит Каулен вроде бы равнодушно. Но я знаю, что и ему не терпится поскорее приступить к делу.

Что ж, конец беседе! Начинается опыт!

Как-то сложилось, что опыты с животным родопсином стали для всех нас: Драчевых, Каулена, Островского, Каламкарова — какими-то особенно волнующими.

Это произошло, наверно, потому, что с первого же дня на нас посыпались новые наблюдения, которые немедленно обрабатывались А. Драчевым на ЭВМ, так что почти каждый опыт, по существу, оказывался пусть небольшой, но законченной научной работой. Затем опыт нужно было несколько раз повторить, а там хоть садись и пиши статью.

Но мы тогда не стремились к повторам, статей не писали, а ставили все новые и новые опыты, идея которых возникала из только что полученного результата. Эксперимент вел нас за собой, но куда? Мы верили: к разгадке тайны зрительного родопсина, а значит, и к решению проблемы первичного механизма зрения.

...Урчит на одной ноте вентилятор где-то в чреве лазерной установки. Таинственно постукивает ЭВМ: А. Драчев и машина ведут между собой диалог глухих. ЭВМ печатает время от времени на экране ответы на вопросы человека и свои вопросы к нему.

Каулен нажимает кнопку — вспышка лазера. Ослепительный зеленый луч метнулся к ячейке с коллодиевой пленкой и дисками. В ту же секунду на экране осциллографа возникла хитрая кривая: очень быстро вниз, потом медленней вверх и совсем медленно дальше вверх.

«Очень быстро» — это быстрее, чем 0,2 микросекунды. «Медленнее» — 500 микросекунд. «Совсем (!) медленно» — 10 миллисекунд.

Так ведь это три фазы фотоэлектрического эффекта бактериородопсина!

Действительно, сходство ответов двух родопсинов необычайное! Только хорошо присмотревшись и посоветовавшись с ЭВМ, мы замечаем деталь, их отличающую: у животного родопсина нарастание потенциала во второй фазе оказывается более медленным, чем у бактериального. А в остальном полное подобие.

Подобными оказались: направление фаз (первая противоположна второй и третьей), соотношение амплитуд этих фаз (амплитуда растет от первой фазы к третьей), общая величина ответа, скорость спада потенциала, направление движения зарядов через мембрану.

Все эти параметры как бы паспорт белка-генератора. Они зависят от устройства генератора. Поэтому у разных белков должны быть разные «паспортные данные». В этом мы смогли убедиться еще до опытов со зрительным родопсином, когда исследовались хлорофилл-белковые комплексы фотосиитезирующих бактерий.

Вот какими показателями характеризовалась хлорофилл-белковая система в условиях, идентичных тем, что мы использовали для родопсинов: выявлялись только две однонаправленные фазы нарастания фотопотенциала, причем первая фаза (быстрее 0,2 микросекунды) была гораздо больше по амплитуде, чем вторая (20 микросекунд). Добавление некоторых искусственных переносчиков электронов вело к появлению еще одной, небольшой по амплитуде фазы, направленной в ту же сторону. В спаде фотопотенциала преобладала компонента со временем около 30 миллисекунд. (У родопсинов — секунда.) Как видно, эти параметры резко отличались от тех, что были обнаружены при исследовании бактериального и животного родопсинов.

Итак, оба родопсина дают фотоэлектрические ответы, характеристики которых либо близки, либо просто совпадают. Поскольку функция бактериородопсина превращение энергии света в электрическую форму, напрашивается предположение, что неизвестная функция животного родопсина также состоит в производстве электричества за счет света. Именно такую рабочую гипотезу мы взяли на вооружение, убедившись в сходстве «паспортных данных» двух родопсинов.

У бактерий электричество, генерируемое на свету, используется для синтеза АТФ, транспорта ионов внутрь клетки, вращения бактериальных жгутиков и т. д. Но зачем нужно электричество при зрении?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*