KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Кунин, "Логика случая. О природе и происхождении биологической эволюции" бесплатно, без регистрации.
Перейти на страницу:

Археи демонстрируют более узкое, но также сложное распределение размеров генома от примерно 0,5 Мб у паразита/симбионта Nanoarchaeum equitans до примерно 5,5 Мб у Methanosarcina barkeri, с острым пиком в районе 2 Мб, который практически точно соответствует расположению плато бактериальных геномов малого размера, вторым небольшим пиком около 3 Мб и тяжелым хвостом, соответствующим геномам большего размера (см. рис. 5–1). При этом смещения в базе данных опять могут быть существенными, так как в настоящее время геномов архей секвенировано примерно на порядок меньше, чем геномов бактерий, так что пока может быть еще просто недостаточно данных для выявления истинной формы распределения размеров геномов. Однако более вероятно, что археи действительно являются менее разнородной группой, как будет обсуждаться далее в данном разделе.

Все очень маленькие (менее 1 Мб) геномы бактерий и архей принадлежат бактериям-паразитам и внутриклеточным симбионтам эукариот и единственной известной архее-паразиту (или симбионту) Nanoarchaeum equitans, которая живет за счет другой археи, Ignicoccus hospitalis. Таким образом, кажется все более вероятным, что минимальный размер генома свободно живущего прокариота, по крайней мере автотрофа, который не зависит от других форм жизни для добывания пищи, немного превышает 1 Мб. Текущий рекорд редукции генома среди свободно живущих клеток, около 1,3 Мб, принадлежит фотосинтезирующей морской альфа-протеобактерии Pelagibacter ubique (SAR11), которая также является наиболее распространенной из известных клеточных форм жизни на Земле (Giovannoni et al., 2005). (Связь между размером популяции и размером генома потенциально важна, мы вернемся к этому вопросу в гл. 8.)

Рис. 5–1. Распределение размеров геномов среди бактерий и архей.

Как мы уже обсуждали в главе 3, бактериальные и архейные геномы характеризуются высокой плотностью белок-кодирующих генов, которые занимают большую часть ДНК. Бактериальные и архейные геномы демонстрируют одномодальное и довольно острое распределение плотности генов, большей частью 0,8–1,2 гена на Кб геномной ДНК (отсюда предельно простое эмпирическое правило: 1 ген на 1000 пар нуклеотидов). Архейное распределение по сравнению с бактериальным сдвинуто в сторону более высоких плотностей, таким образом, в среднем архейные геномы даже более компактны, чем бактериальные. Похоже, что как кодирующие, так и межгенные области у архей немного короче по сравнению с бактериями.

Таким образом, археи и бактерии весьма похожи в смысле характерных размеров и общей архитектуры геномов, но резко отличаются от эукариот, которые охватывают много больший интервал размеров генома, имеют белок-кодирующие гены, часто прерываемые интронами, и более длинные межгенные промежутки (см. гл. 8). Эти общие признаки бактерий и архей подтверждают концепцию «прокариотного принципа организации генома» (см. более подробно ниже).

Пространство-время прокариот и его эволюция

Фрактальное пространство-время генома, пангеномы и кластеризация прокариот

В главе 3 мы сосредоточились на трехкомпонентной структуре прокариотического геномного пространства, состоящего из ядра, оболочки и облака, и показали, что эта структура фрактальна. Одни и те же три компонента, а именно небольшое ядро, оболочка большего размера и огромное по сравнению с ними «облако», проявляются на любом уровне разбиения генного пространства, от мира прокариот в целом до совсем небольших групп бактерий (см. рис. 3-14). Непосредственным следствием этой фрактальности является важность «пангеномов» – всей общности генов, представляющих геномы, принадлежащие к кластеру архей или бактерий на данном уровне. Читатель может (и должен) немедленно спросить, что определяет кластеры и откуда берутся уровни. Пока предположим, что дерево рРНК Карла Вёзе (см. рис. 2–3) разумно описывает организацию пространства-времени мира прокариот и является по крайней мере одним из источников для кластеризации. В главе 6 мы обсудим применимость и смысл концепции древа жизни более глубоко и покажем, что дерево рРНК, хотя ни в коем случае и не является полным представлением истории эволюции прокариот, тем не менее вполне осмысленно.

Огромное множество архейных и бактериальных генов кодируют белки, которые не имеют никакого измеримого сходства с какими-либо другими доступными последовательностями белков. Эти гены часто обозначают как одинокие рамки считывания (ОРС)[50] (Daubin and Ochman, 2004). Обычно в архейных и бактериальных геномах ОРС составляют 10–15 процентов от всех предсказанных генов. Многие ОРС – очень короткие, и некоторые из них могут быть не реальными генами, а результатом ошибочного предсказания при анализе генома (Ochman, 2002). Кроме того, высказывается предположение, что большинство ОРС, являющихся полноценными генами, произошли от генов бактериофагов и, соответственно, характеризуются высокой горизонтальной мобильностью, хотя в некоторых случаях они могут быть задействованы для клеточных функций и, соответственно, фиксируются в бактериальных и архейных геномах. Последние оценки, следующие из метагеномных исследований бактериофагов, предполагают, что разнообразие фаговых последовательностей очень велико и остается по большей части неизученным (Edwards and Rohwer, 2005). Таким образом, кажется привлекательной идея, что бо́льшая часть бактериальных и архейных ОРС произошла из этого огромного резервуара генов. В трехкомпонентной структуре вселенной прокариотических генов, с которой мы теперь знакомы, ОРС естественным образом объединяются с «облаком» редких генов, которые количественно доминируют в генном пространстве, но не в индивидуальных геномах, как обсуждалось в главе 3.

Насколько велико все геномное пространство прокариот? Сколько генов в общей сложности оно содержит? Надежная экстраполяция расширения геномного пространства в результате продолжающегося секвенирования бактериальных и архейных геномов и достоверная оценка реального размера этого пространства трудноосуществимы. Однако с учетом большого разнообразия микробных виромов, которые являются основным резервуаром генов и их переносчиком (см. также гл. 10), наиболее вероятно, что число элементов прокариотического геномного пространства увеличится на порядки величины, в основном, если не исключительно, за счет расширения «облака» (Koonin and Wolf, 2008b; Lapierre and Gogarten, 2009).

Эволюционная динамика архитектуры генома прокариот: опероны, суперопероны и сети соседствующих генов

Как уже отмечалось в главе 3, практически сразу же, как только были опубликованы первые полные геномные последовательности, стало очевидным, что последовательность генов в бактериальных и архейных геномах относительно мало консервативна, она сохраняется существенно хуже, чем последовательность нуклеотидов в самих генах (см. рис. 3–6). Для того чтобы анализировать эволюцию последовательности генов, необходимо иметь надежный набор ортологичных генов в сравниваемых геномах (см. табл. 3–1). Как только такое множество ортологичных генов задано, становится достаточно просто оценить степень сохранения последовательности генов, например с помощью точечного графика (одно из самых ранних представлений степени сходства нуклеотидных и белковых последовательностей), в котором каждая точка представляет собой пару ортологов. Исследование этих графиков показывает быстрое расхождение порядка генов у прокариот таким образом, что даже между близкородственными организмами коллинеарность хромосом разрушена в нескольких точках (см. рис. 5–2а), a умеренно разошедшиеся организмы показывают лишь несколько протяженных коллинеарных районов (см. рис. 5–2б и 5–2в). Для любой пары более отдаленных друг от друга организмов график выглядит как карта звездного неба (см. рис. 5–2 г). Разрушение синтении в процессе эволюции бактериальных и архейных геномов обычно явно бросается в глаза на графике, образуя картину в форме буквы X (см. рис. 5–2б и 5–2в). В свое время было сделано предположение, что такая картина возникает в результате симметричных хромосомных инверсий с центром в точке начала репликации (Eisen et al., 2000). Исходной причиной таких инверсий может быть высокая частота рекомбинаций в репликационных вилках, которые в кольцевых хромосомах бактерий и архей обычно располагаются с обеих сторон и на одинаковом расстоянии от точки начала репликации.

Рис. 5–2. Расхождение порядка следования генов между геномами бактерий: а – Borrelia afzelii PKo по сравнению с Borrelia burgdorferi B31; б – Shewanella oneidensis MR-1 по сравнению с Shewanella sp. ANA-3; в – Pseudomonas fluorescens PfO-1 по сравнению с Pseudomonas fluorescens Pf-5; г – Pseudomonas fluorescens Pf-5 по сравнению с Pseudomonas syringae pv. tomato str. DC3000. Каждая точка представляет пару ортологичных генов, идентифицированных с использованием метода наилучшего сходства при двунаправленном сравнении (см. табл. 3–1). Яркие точки показывают пары ортологичных генов, принадлежащих консервативным массивам генов; бледные точки показывают изолированные ортологи. DY – расстояние между сравниваемыми геномами в терминах порядка следования генов, как описано в Novichkov et al., 2009. DN – медианное расстояние между последовательностями несинонимических сайтов в белок-кодирующих генах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*