KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Кунин, "Логика случая. О природе и происхождении биологической эволюции" бесплатно, без регистрации.
Перейти на страницу:

Стохастичность, нейтральность и отбор в эволюции

В предыдущих разделах этой главы мы ознакомились со многими количественными универсалиями, отражающими важнейшие аспекты эволюции и функционирования генома. Среди этих универсалий мы рассматривали вездесущий степенной закон распределения, который описывает как структуру всех биологических сетей, так и семейства паралогичных генов в разнообразных геномах, близкое к логарифмически нормальному распределение скоростей эволюции генов и универсальные корреляции, такие как отрицательная корреляция между генной экспрессией и скоростью эволюции. Какова природа этих универсалий? Отражают ли они какие-то глубокие свойства эволюции или это просто статистические эффекты, не имеющие отношения к пониманию биологических явлений? Здесь и далее в этой книге (гл. 13) будет отстаиваться точка зрения на эти универсалии как на нетривиальные, характерные и биологически значимые тенденции, хотя они отражают только одну из двух (а возможно, и большего числа) дополнительных (в смысле принципа дополнительности Бора) составляющих эволюции жизни[44].

Во-первых, как это уже отмечалось и теперь совершенно очевидно, все эти универсалии зависимы от поведения совокупностей генов, фундаментальных единиц эволюции, рассматриваемых как статистические ансамбли. Таким образом, эти универсальные зависимости и распределения являются эмергентными свойствами биологических систем, то есть свойствами, проявляющимися в результате того, что эти системы состоят из многочисленных (достаточно многочисленных для проявления устойчивых статистических закономерностей) элементов (генов или белков, в зависимости от контекста), слабо взаимодействующих друг с другом (если сравнивать эти взаимодействия с теми, которые поддерживают целостность самих этих элементов).

Во-вторых, как мы уже видели, современный эволюционный анализ не останавливается на демонстрации существования универсальных понятий и законов. По крайней мере некоторые ключевые универсалии, такие как распределение эволюционных скоростей, отрицательные корреляции между скоростью эволюции и экспрессией и распределение численности паралогичных семейств, были теоретически выведены в рамках простых, но достаточно детализированных, формальных моделей эволюции. Способность простых моделей, в которых в качестве элементарных событий рассматриваются наиболее общие эволюционные процессы (такие как дупликация и утрата генов), объяснять геномные универсалии убеждает в том, что эти универсалии отражают существенные черты эволюции.

Третье, и, возможно, наиболее важное, замечание о новой парадигме понимания эволюции, которую мы пытаемся здесь обрисовать, состоит в том, что порождающие модели для общегеномных универсалий либо совсем не используют понятие отбора, либо используют только понятие очищающего (стабилизирующего) отбора. Эта форма отбора направлена на сохранение статуса-кво и наблюдается для укладки белковых молекул, для распределения численности генных семейств и для универсальной зависимости численности функциональных классов генов от общего числа генов (Koonin and Wolf, 2010b).

Аналогия между эволюционным процессом и статистической физикой не ограничена существованием универсальных зависимостей и распределений, некоторые из которых могут быть выведены в рамках простых моделей. Возможно также составить схему детального соответствия ключевых параметров этих двух областей (Barton and Coe, 2009; Sella and Hirsh, 2005). Такой параметр состояния (степень свободы), как положение частицы, в этой схеме является аналогом либо состояния сайта в нуклеотидной или белковой последовательности, либо состояния гена в геноме (в зависимости от уровня моделирования эволюции), и тогда параметрам скорости эволюции для сайта или гена будет соответствовать скорость частицы. Более того, значение эффективной численности популяции будет очевидно аналогичным значению температуры в статистической физике, а приспособленность будет соответствовать свободной энергии.

Краткий обзор и перспектива: о природе эволюционного процесса

Результаты взаимопроникновения сравнительной геномики и системной биологии, обсуждаемые в данной главе, приводят нас к следующему ключевому обобщению.

Многие, чтобы не сказать все, общие закономерности геномной и молекулярно-фенотипической эволюций описываются стохастическими процессами, основанными на принципе подверженной ошибкам репликации и ограниченными очищающим отбором, который поддерживает существующую общую (но не специфическую) архитектуру генома и устройства клеток.

Это обобщение не следует понимать как исключение адаптации из числа важнейших эволюционных понятий. Разумеется, адаптация – это общее и неотъемлемое явление в эволюции всех форм жизни. Тем не менее становится все более ясным, что общие количественные характеристики геномной архитектуры, функционирования и эволюции в первую очередь определяются неадаптивными, стохастическими процессами. Адаптация только модулирует эти закономерности. Здесь становится очень соблазнительным провести вполне очевидную параллель с нейтральной теорией Кимуры. В ходе высокоуровневого анализа геномных и молекулярно-фенотипических параметров мы начинаем различать контуры «неонейтрализма» (см. также гл. 8).

Аналогия между эволюцией и стохастическими физическими процессами ни в коем случае не отрицает метафоры «эволюции как мастерового» Жакоба. Напротив, новые открытия в эволюционной геномике прекрасно вписываются в это представление об эволюции: естественный отбор (адаптивный компонент эволюции) представляет собой процесс «латания», не полную перестройку или создание нового объекта, а добавление к существующему новых частей из уже имеющихся подручных материалов. Таким образом, первичная форма отбора – это очищающий отбор, который поддерживает статус-кво. Это обобщение имеет довольно удивительное, но неизбежное следствие: большая часть наиболее значимых событий во всей истории жизни произошла в течение первых нескольких сотен миллионов лет существования жизни на Земле, до появления современного типа клеток. Этот период в истории жизни должен был качественно отличаться от всей остальной эволюции; есть основания считать, что важнейшее достижение эволюции – это появление клетки, все остальное уже не так важно. Мы будем обсуждать происхождение жизни с этой точки зрения в главах 11 и 12 и вернемся к обсуждению общей природы эволюции в главе 13.

Параллели между эволюционной биологией и статистической физикой оказались точными и фундаментальными до такой степени, что кажется вполне справедливым заключение о том, что это не аналогии, а проявление общих статистических принципов (если не сказать законов) поведения больших ансамблей слабовзаимодействующих объектов[45]. Как в физике, так и в эволюционной биологии такие ансамбли (например, идеальный газ в физике и геном как сумма генов в биологии) являются идеализациями. В реальности отклонения от поведения, которое предсказывается простыми статистическими моделями, неизбежны и значимы. В эволюционной биологии такие отклонения, кроме всего прочего, вызываются различными взаимодействиями генов, что приводит к неожиданным эффектам, таким как отсутствие строгой корреляции между биологической значимостью гена и скоростью его эволюции. Тем не менее существенный эвристический потенциал прямого статистического подхода в объяснении по крайней мере некоторых фундаментальных свойств как физических, так и биологических процессов неоспорим.

Рекомендуемая дополнительная литература[46]

Barabasi, A. L., and Z. N. Oltvai. (2004) Network Biology: Understanding the Cell’s Functional Organization. // Nature Reviews Genetics 5: 101–113.

Обзор свойств биологических сетей с акцентом на масштабной инвариантности.

Barton, N. H., and J. B. Coe. (2009) On the Application of Statistical Physics to Evolutionary Biology. Journal of Theoretical Biology 259: 317–324.

Технически сложная, но важная работа по термодинамическому подходу в эволюционной биологии.

Drummond, D. A., and C. O. Wilke. (2009) The Evolutionary Consequences of Erroneous Protein Synthesis. Nature Reviews Genetics 10: 715–724.

Критический обзор концепции эволюции, ограниченной ошибками трансляции и ошибками укладки белка.

Lobkovsky, A. E., Y. I. Wolf, and E. V. Koonin. (2010) Universal Distribution of Protein Evolution Rates As a Consequence of Protein Folding Physics. Proceedings of the National Academy of Sciences USA 107: 2,983—2,988.

В этой работе эволюционная динамика выводится в рамках простой модели укладки белка и с хорошей точностью воспроизводится универсальное распределение эволюционных скоростей.

Koonin, E. V., and Y. I. Wolf. (2006) Evolutionary Systems Biology: Links Between Gene Evolution and Function // Current Opinion in Biotechnology 17: 481–487.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*