KnigaRead.com/

Руперт Шелдрейк - Новая наука о жизни

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Руперт Шелдрейк, "Новая наука о жизни" бесплатно, без регистрации.
Перейти на страницу:

Развитие многоклеточных организмов происходит через серии стадий, контролируемых последовательностью морфогенетических полей. Сначала развиваются эмбриональные ткани под контролем первичных эмбриональных полей. Затем рано (в «мозаичном» развитии) или поздно (в «регуляторном» развитии) различные области подпадают под влияние вторичных полей: у животных — полей конечностей, глаз, ушей и так далее; у растений — полей листьев, лепестков, тычинок и так далее. Вообще говоря, морфогенезис, вызванный первичными полями, внешне не впечатляет, но имеет фундаментальное значение, поскольку устанавливает характерные различия между клетками в разных участках организма, и эти различия (согласно настоящей гипотезе) позволяют им играть роль морфогенетических зародышей полей органов. Затем в тканях, развивающихся под их влиянием, появляются зародыши вспомогательных полей, которые контролируют морфогенез структур в пределах органа как целого: в листе — пластинок, прилистников, черенков и т. д.; в глазу — роговицы, радужной оболочки, хрусталика и т. д. А затем выступают на сцену морфогенетические поля еще более низких уровней, например контролирующие дифференциацию сосудов в пластинках листа или дифференциацию слизистой оболочки рта и клеток волосков на ее поверхности.

Эти поля могут быть и были исследованы экспериментально при изучении способности развивающихся организмов к регуляции после повреждения различных участков эмбриональной ткани и после прививки ткани, взятой из одного участка, на другой участок организма эмбриона. Как в эмбрионах животных, так и в меристемных зонах растений по мере развития тканей автономия различных участков возрастает; система в целом теряет способность к регуляции, но местная регуляция осуществляется в развивающихся органах, когда первичные эмбриональные поля заменяются более многочисленными вторичными полями.[140]

6.2. Полярность морфогенетических полей[141]

Большинство биологических морфических единиц поляризовано по крайней мере в одном направлении. Их морфогенетические поля, содержащие поляризованные виртуальные формы, будут автоматически принимать подходящие ориентации, если их морфогенетические зародыши также внутренне поляризованы, но если нет — полярность должна быть наложена на них. Например, сферические яйцеклетки водоросли Fucus не имеют врожденной полярности, и их развитие может начаться только после того, как они поляризованы каким-либо из разнообразных направленных стимулов — светом, градиентом концентрации веществ или электрическими токами; в отсутствие какого-либо из таких стимулов полярность принимается наугад, предположительно благодаря спонтанным флуктуациям.

Почти все многоклеточные организмы поляризованы в направлении стебель — корень или голова — хвост, многие, кроме того, поляризованы и во втором направлении — вентрально-дорсальном,[142] а некоторые — в трех направлениях: голова — хвост, вентрально-дорсальное и левое — правое. Последняя группа является асимметричной и потенциально способна существовать в формах, которые являются зеркальными отражениями друг друга, например улитки со спиральными раковинами. А в организмах с билатеральной симметрией[143] асимметричные структуры, которые возникают на обеих сторонах, обязательно образуются как в правой, так и в левой форме, например руки правая и левая.

Эти зеркальные формы имеют одинаковую морфологию и предположительно развиваются под влиянием одного и того же морфогенетического поля. Поле просто принимает конфигурацию (правую или левую) того морфогенетического зародыша, с которым оно связывается. Так, правые и левые предшествующие системы влияют на правые и левые последующие системы через морфический резонанс.

Такая интерпретация подтверждается некоторыми фактами, хорошо известными в биохимии. Молекулы аминокислот и сахаров являются асимметричными и могут существовать как в правой, так и в левой формах. Однако в живых организмах все аминокислоты в белках являются левосторонними, тогда как большая часть сахаров — правосторонними. Сохранение таких асимметрий возможно благодаря асимметричным структурам ферментов, которые катализируют синтез молекул. В природе большинство аминокислот и сахаров редко или вообще не встречаются вне живых организмов. Поэтому эти индивидуальные асимметричные формы должны вносить преобладающий вклад в морфогенетические поля молекул путем морфического резонанса. Но когда они синтезируются в искусственных условиях, получаются равные количества правосторонних и левосторонних форм; это показывает, что такая «сторонность» формы не является внутренним свойством морфогенетических полей.

6.3. Размеры морфогенетических полей

Размеры индивидуальных атомных или молекулярных морфических единиц более или менее постоянны; это относится также к размерам кристаллических решеток, хотя они повторяются неограниченное число раз, образуя кристаллы различных размеров. Биологические морфические единицы более разнообразны: не только имеются различия между клетками, органами и организмами данных типов, но и сами индивидуальные морфические единицы изменяют размеры в процессе своего роста. Если морфический резонанс должен иметь место со стороны прошлых систем с подобными формами, но другими размерами и если определенное морфогенетическое поле должно оставаться связанным с растущей системой, тогда формы должны быть способны уменьшаться или увеличиваться в масштабе в морфогенетическом поле. Таким образом, их существенные черты будут зависеть не от абсолютных, но от относительных положений их составных частей и от относительных скоростей их вибраций. Простую аналогию представляет музыка, которую воспроизводит играющая грампластинка на различных скоростях вращения: она остается узнаваемой, несмотря на абсолютные изменения во всех тонах и ритмах, потому что отношения нот и ритмов остаются теми же самыми.

Хотя морфогенетические поля могут быть регулируемы по абсолютной величине, диапазон, в котором может изменяться размер системы, ограничен строгими физическими рамками. В трехмерных системах изменения площади поверхности и объема пропорциональны соответственно квадрату и кубу линейных размеров. Этот простой факт означает, что биологические системы не могут неограниченно увеличиваться или уменьшаться без потери стабильности.[144]

6.4. Возрастающая специфичность морфического резонанса в процессе морфогенеза

Энергетический резонанс не является процессом типа «все или ничего»: система резонирует в ответ на диапазон частот, более или менее близких к ее естественной частоте, хотя максимальный отклик происходит лишь тогда, когда воздействующая частота совпадает с ее собственной. Аналогичным образом морфический резонанс может быть более или менее тонко «настроен» и обладает наибольшей специфичностью, когда формы прошлых и настоящих систем наиболее близки.

Когда морфогенетический зародыш попадает в морфический резонанс с формами бесчисленных предшествующих систем более высоких уровней, эти формы не совпадают точно, но порождают вероятностную структуру. На первых стадиях морфогенеза структуры актуализируются в определенных местах в пределах областей, задаваемых вероятностной структурой. Теперь система имеет более развитую и лучше очерченную форму и, следовательно, будет более подобна формам некоторых предшествовавших аналогичных систем, нежели другие формы; морфический резонанс от такой формы станет более специфичным и потому более эффективным. По мере того как развитие прогрессирует, селективность морфического резонанса будет возрастать.

Самую общую иллюстрацию этого принципа представляет развитие организма из оплодотворенного яйца. Ранние стадии эмбриогенеза часто напоминают таковые множества других видов или даже семейств и отрядов. В процессе развития последовательно появляются определенные черты отряда, семейства, рода и, наконец, вида, а относительно незначительные признаки, отличающие один индивидуальный организм от другого организма того же вида, обычно появляются последними.

Эта возрастающая специфичность морфического резонанса будет стремиться канализировать развитие в направлении индивидуальных вариантов конечной формы, которые были выражены в предшествовавших организмах. Детали пути развития будут подвержены влиянию как генетических факторов, так и окружающей среды: организм определенного генетического строения будет стремиться развиваться таким образом, чтобы входить в специфический морфический резонанс с предшествовавшими индивидами с той же генетической конституцией, а влияния окружающей среды будут стремиться вовлечь организм в область специфического морфического влияния прошлых организмов, которые развивались в том же окружении. Предшествовавшие подобные морфические единицы, которые являлись частями такого же организма, будут оказывать еще более специфическое воздействие. Например, в развитии листьев на дереве формы предыдущих листьев на том же дереве, вероятно, будут вносить особенно значительный вклад в морфогенетическое поле, стремясь стабилизировать форму листьев, характерную именно для этого дерева.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*