Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома
Рис. 4.1. Единичный элемент ДНК при копировании порождает множество РНК-копий. В ходе не совсем обычного процесса эти молекулы РНК могут копироваться обратно в ДНК, вновь встраиваясь в геном. Это увеличивает число таких элементов. На ранних этапах эволюции такое могло случаться много раз, но здесь для ясности показан лишь однократный процесс.
К этому вопросу можно подходить по-разному. Большинство повторов — очень старые по эволюционным меркам. Сравнение с другими животными показывает, что основная часть повторов возникла еще до того, как плацентарные отделились от других животных, то есть более 125 миллионов лет назад. По крайней мере в одном классе повторов мы не получали никаких новых вставок в геном с тех пор, как отделились от нечеловекообразных обезьян Старого Света примерно 25 миллионов лет назад. Так что, вероятно, количество повторов в геноме человека (точнее, эволюционных предков человека) невероятно возросло еще в далеком прошлом. После этого цифры не претерпевали значительного роста. Возможно, это означает, что существует какой-то верхний предел количества таких повторов, которое мы в состоянии выдержать. Но они, судя по всему, выводятся из генома очень медленно. Это, в свою очередь, наводит на мысль, что до тех пор, пока количество повторов ниже порогового значения, мы вполне можем с ними уживаться.
Однако, похоже, человеческий геном справляется с такими повторами несколько иначе, чем другие виды. У млекопитающих, как правило, более разнообразный спектр определенных повторов, чем у иных видов. Но у млекопитающих в основе этих повторов лежат очень древние последовательности, которые находились в геноме очень долгое время. В других организмах некоторая доля старых повторов вычищалась, и новые занимали их место. Авторы черновой расшифровки человеческого генома подсчитали, что у дрозофилы нефункциональный компонент ДНК имеет «период полураспада« примерно в 12 миллионов лет. Для млекопитающих этот показатель составляет около 800 миллионов лет.
Но даже среди млекопитающих человек выделяется. Число повторяющихся элементов в эволюционной ветви гоминид и их ближайших предков падало с тех времен, как количество видов млекопитающих стало увеличиваться. С грызунами такого не происходило. Кроме того, основная часть повторов в человеческом геноме больше не подвергается процедуре «скопировать и вставить». В сущности, сейчас повторы активнее у грызунов, чем у приматов.
Возможно, следствием этого является то, что повторы приносят грызунам больше проблем, чем человеку. Если повторы в геноме копируются, они могут затем встраиваться в работоспособные гены, кодирующие белки (или рядом с ними), тем самым мешая нормальной работе этих генов. В некоторых случаях они способны препятствовать экспрессии нужного гена, в других случаях — вызвать усиление его экспрессии. Для мышей встраивание повторяющихся последовательностей в новые области генома приводит к возникновению новых генетических заболеваний с вероятностью, в 60 раз превышающую аналогичную вероятность для человеческих клеток. Для мышей такие процессы становятся причиной 10% всех новых генетических мутаций, тогда как для человека этот показатель составляет одну шестисотую. Похоже, наш геном находится под более строгим контролем, чем у грызунов — наших дальних родичей.
Опасное повторение
Возможно, это даже хорошо. Рассмотрим некоторые последствия, которые приносит грызунам действие мутационного механизма такого типа. Существует генетическая линия мышей, у которых такая мутация приводит к отсутствию хвоста. Проблема сама по себе невеликая, но при этом еще и не развиваются почки, а это уже очень скверно2. Дело в том, что встраивание повторяющейся последовательности в данном случае приводит к чрезмерной экспрессии одного из близлежащих генов. У другой линии мышей такая вставка отключает один из важных генов, регулирующих центральную нервную систему. В результате животные во время опытов испытывают спазмы, а кроме того, живут всего две недели3.
К похожему выводу о потенциальном воздействии подобных повторов можно прийти, анализируя противоположное явление, то есть рассматривая области генома, где эти повторы практически никогда не встречаются.
Существует группа генов, именуемая Hox-кластером. Они играют важнейшую роль, ибо управляют развитием сложных многоклеточных организмов. В ходе развития организма гены кластера включаются в определенном порядке, и их экспрессия жестко регулируется. Если порядок включения нарушится, это может привести к тяжелым и далеко идущим последствиям. Важность Hox-кластера впервые показали на примере дрозофил. У мушек с мутациями в этих генах развились необыкновенные свойства. К примеру, на голове у них вместо антенн появляется пара ног (самый известный пример)4.
Подобно мухам, млекопитающие также полагаются на правильную картину экспрессии Hox-генов, нужным образом формирующую строение тела. У человека мутации в Hox-кластере довольно редки — вероятно, благодаря тому, что эти гены играют такую важную роль. Однако ученые показали, что мутация хотя бы в одном Hox-гене приводит к возникновению дефектов конечностей5.
Hox-кластер — одно из немногих мест человеческого генома, где почти нет рассеянных повторяющихся элементов. Это позволяет предположить, что даже сравнительно безобидные генетические гости способны влиять на экспрессию генов и что эволюция позаботилась о том, чтобы они не очень-то вольничали в определенных областях генома. Удалось выяснить, что Hox-кластер также почти свободен от таких повторов у других приматов и у грызунов.
Наличие в геноме рассеянных повторов может приводить к неожиданным последствиям. Один из необычных классов повторов называется ЭРВ (эндогенными ретровирусами). ВИЧ (вирус иммунодефицита человека, вызывающий СПИД) — как раз пример ретровируса. Генетический материал таких вирусов состоит из РНК, а не из ДНК. Вирусная РНК копируется для образования ДНК, которая затем может встраиваться в геном организма-хозяина. Этот геном воспринимает такую ДНК как свою собственную, производя новые вирусные компоненты и, в конечном счете, новые вирусы.
Давным-давно, на заре нашей эволюционной истории, какие-то ретровирусы прижились в геномах наших эволюционных предков. Многие из них теперь представляют собой «геномные окаменелости». Какие-то части ретровирусных последовательностей оказались утраченными, а значит, эти последовательности уже больше не могли производить вирусные частицы. Однако некоторые по-прежнему содержат в себе все компоненты, необходимые для создания новых вирусов. Обычно клетка держит их под строгим контролем6. Кроме того, ученые обнаружили, что иммунная система не только борется с вирусами, которые заражают нас, проникая извне. Она играет роль и в контролировании эндогенных вирусов. Генетически модифицированные мыши, которых сознательно лишили определенных компонентов нормальной иммунной системы, испытывают целый ряд проблем из-за того, что эти вирусы, таящиеся в их собственных геномах, вновь активизируются7.
Возможно, изучение процессов контроля эндогенных ретро-вирусов поможет справиться с одной давней проблемой здравоохранения. Каждый год тысячи людей умирают, не дождавшись органов для пересадки. Дело в том, что доноров вечно не хватает. Так, примерно треть пациентов, чью жизнь удалось бы спасти с помощью пересадки сердца, умирает, так и не получив нужного донорского органа8.
А если использовать сердца животных? Такой процесс называется ксенотрансплантацией (от греческого слова, означающего «чужеродный»). Для пересадки сердца лучше всего подходит свинья: ее сердце примерно такого же размера и мышечной силы, как и аналогичный орган человека.
Конечно, придется преодолеть массу технических сложностей (не говоря уж об этических: некоторые религиозные группы могут воспротивиться такому использованию свиньи, «нечистого животного»)9. Чтобы справиться с какими-то из этих трудностей, сейчас выращивают генетически модифицированных свиней, которые не вызывают слишком уж активной иммунной реакции, возникающей, когда в сердечно-сосудистую систему человека вводят свиные клетки. Но тут возможна и другая проблема. Геном свиньи, как и геном человека, содержит эндогенные ретровирусы. Однако эндогенные ретровирусы свиньи отличаются от ЭРВ человека. Работы, проведенные еще в конце XX века, показали: некоторые из этих свиных ретровирусов в определенных условиях способны заражать человеческие клетки10.
Вот один из возможных сценариев, беспокоящий некоторых ученых. Любой пациент, которому пересадят сердце свиньи, будет неизбежно получать препараты, подавляющие иммунитет, чтобы предотвратить отторжение чужеродного органа. Реактивация эндогенных ретровирусов более вероятна как раз в тех случаях, когда иммунитет человека подавлен. Системы человеческого организма в ходе эволюции приобрели способность контролировать эндогенные ретровирусы, которые находились в нашем геноме с тех пор, как человек возник. Однако этих систем может оказаться недостаточно для того, чтобы столь же эффективно контролировать ЭРВ, таящиеся в геноме свиньи. Теоретически это может означать, что эндогенные ретровирусы способны в один прекрасный момент вырваться из пересаженного свиного сердца, атаковать другие клетки реципиента-человека и вторгнуться в них. После чего, быть может, они даже начнут размножаться, захватывая все новые участки организма.