KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Е. Миркес, "Учебное пособие по курсу «Нейроинформатика»" бесплатно, без регистрации.
Перейти на страницу:

1. Тестирование решения примера.

2. Оценивание решения примера.

3. Оценивание решения примера с вычислением градиента.

4. Оценивание и тестирование решения примера.


Таблица 1. Параметры запроса для позадачной работы

Название параметра 1 2 3 4 Перейти к следующему примеру +/– +/– +/– +/– Остановиться в конце обучающего множества +/– +/– +/– +/– Вычислять оценку – + + + Интерпретировать ответ + – – + Вычислять градиент – – + – Подготовка к контрастированию – – +/– –

Все перечисленные запросы работают с текущей сетью и текущим примером задачника. Однако компоненту задачник необходимо указать, какой пример подлежит обработке. Кроме того, в главе «Оценка и интерпретатор ответа» введен класс оценок, вычисляемых по всему обучающему множеству. Такие оценки позволяют существенно улучшить обучаемость сети и ускорить ее обучение. Нет смысла возлагать перебор примеров на учителя, поскольку это снижает полезность компонента исполнитель. Таким образом, возникает еще четыре вида запросов.

Тестирование решения всех примеров обучающего множества.

Оценивание решения всех примеров обучающего множества.

Оценивание решения всех примеров обучающего множества с вычислением градиента.

Оценивание и тестирование решения всех примеров обучающего множества.

Как уже отмечалось в главе «Двойственные сети», каждую из приведенных четверок запросов можно объединить в один запрос с параметрами. В табл. 1 приведен полный список параметров для первой четверки запросов, а в табл. 2 — для второй.


Таблица 2. Параметры запроса для обучающего множества в целом

Название параметра 5 6 7 8 Вычислять оценку – + + + Интерпретировать ответ + – – + Вычислять градиент – – + – Подготовка к контрастированию – – +/– –

Символ «+» означает, что в запросе, номер которого указан в первой строке колонки, возможность, задаваемая данным параметром, должна быть использована. Символ «–» — что связанная с данным параметром возможность не используется. Символы «+/–» означают, что запрос может, как использовать, так и не использовать данную возможность. Отметим, что подготовка к контрастированию может быть задействована, только если производится вычисление градиента, а вычисление градиента невозможно без вычисления оценки. Остальные параметры независимы.

Отбор примеров в обучающее множество, открытие сеанса работы с задачником должны выполняться учителем или контрастером. Исполнитель только организует перебор примеров в обучающем множестве.

При полной или частичной аппаратной реализации нейрокомпьютера компонент исполнитель эффективно реализуется аппаратно, по следующим причинам.

Исполнитель реализует исключительно связные функции по отношению к другим компонентам.

Исполняемые им запросы постоянны и не зависят от реализаций других компонентов нейрокомпьютера.

Этот компонент работает чаще, чем любой другой, и, как следствие, ускорение в работе исполнителя приводит к соизмеримому ускорению работы нейрокомпьютера.

Лекция 11.2, 12. Учитель

Этот компонент не является столь универсальным как задачник, оценка или нейронная сеть, поскольку существует ряд алгоритмов обучения жестко привязанных к архитектуре нейронной сети. Примерами таких алгоритмов могут служить обучение (формирование синаптической карты) сети Хопфилда [312], обучение сети Кохонена [ 31, 132] и ряд других аналогичных сетей. Однако в главе «Описание нейронных сетей» приводится способ формирования сетей, позволяющий обучать сети Хопфилда [312] и Кохонена [131, 132] методом обратного распространения ошибки. Описываемый в этой главе компонент учитель ориентирован в первую очередь на обучение двойственных сетей (сетей обратного распространения ошибки).

Что можно обучать методом двойственности

Как правило, метод двойственности (обратного распространения ошибки) используют для подстройки параметров нейронной сети. Однако, как было показано в главе «Описание нейронных сетей», сеть может вычислять не только градиент функции оценки по обучаемым параметрам сети, но и по входным сигналам сети. Используя градиент функции оценки по входным сигналам сети можно решать задачу, обратную по отношению к обучению нейронной сети.

Рассмотрим следующий пример. Пусть есть сеть, обученная предсказывать по текущему состоянию больного и набору применяемых лекарств состояние больного через некоторый промежуток времени. Поступил новый больной. Его параметры ввели сети и она выдала прогноз. Из прогноза следует ухудшение некоторых параметров состояния больного. Возьмем выданный сетью прогноз, заменим значения параметров, по которым наблюдается ухудшение, на желаемые значения. Полученный вектор ответов объявим правильным ответом. Имея правильный ответ и ответ, выданный сетью, вычислим градиент функции оценки по входным сигналам сети. В соответствии со значениями элементов градиента изменим значения входных сигналов сети так, чтобы оценка уменьшилась. Проделав эту процедуру несколько раз, получим вектор входных сигналов, порождающих правильный ответ. Далее врач должен определить, каким способом (какими лекарствами или процедурами) перевести больного в требуемое (полученное в ходе обучения входных сигналов) состояние. В большинстве случаев часть входных сигналов не подлежит изменению (например пол или возраст больного). В этом случае эти входные сигналы должны быть помечены как не обучаемые (см. использование маски обучаемости входных сигналов в главе «Описание нейронных сетей»).

Таким образом, способность сетей вычислять градиент функции оценки по входным параметрам сети позволяет решать вполне осмысленную обратную задачу: так подобрать входные сигналы сети, чтобы выходные сигналы удовлетворяли заданным требованиям.

Кроме того, использование нейронных сетей позволяет ставить новые вопросы перед исследователем. В практике группы «НейроКомп» был следующий случай. Была поставлена задача обучить сеть ставить диагноз вторичного иммунодефицита по данным анализов крови и клеточного метаболизма. Вся обучающая выборка была разбита на два класса: больные и здоровые. При анализе базы данных стандартными статистическими методами значимых отличий обнаружить не удалось. Сеть оказалась не способна обучиться. Далее у исследователя было два пути: либо увеличить число нейронов в сети, либо определить, что мешает обучению. Исследователи выбрали второй путь. При обучении сети была применена следующая процедура: как только обучение сети останавливалось из-за невозможности дальнейшего уменьшения оценки, пример, имеющий наихудшую оценку, исключался из обучающего множества. После того, как сеть обучилась решению задачи на усеченном обучающем множестве, был проведен анализ исключенных примеров. Выяснилось, что исключено около половины больных. Тогда множество больных было разбито на два класса — больные1 (оставшиеся в обучающем множестве) и больные2 (исключенные). При таком разбиении обучающей выборки стандартные методы статистики показали значимые различия в параметрах классов. Обучение сети классификации на три класса быстро завершилось полным успехом. При содержательном анализе примеров, составляющих классы больные1 и больные2, было установлено, что к классу болные1 относятся больные на завершающей стадии заболевания, а к классу больные2 — на начальной. Ранее такое разбиение больных не проводилось. Таким образом, обучение нейронной сети решению прикладной задачи поставило перед исследователем содержательный вопрос, позволивший получить новое знание о предметной области.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*