KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Братко, "Программирование на языке Пролог для искусственного интеллекта" бесплатно, без регистрации.
Перейти на страницу:

Например, для списка

[ энн, теннис, том, лыжи ]

энн — это голова, а хвостом является список

[ теннис, том, лыжи ]

В общем случае, головой может быть что угодно (любой прологовский объект, например, дерево или переменная); хвост же должен быть списком. Голова соединяется с хвостом при помощи специального функтора. Выбор этого функтора зависит от конкретной реализации Пролога; мы будем считать, что это точка:

.( Голова, Хвост)

Поскольку Хвост — это список, он либо пуст, либо имеет свои собственную голову и хвост. Таким образом, выбранного способа представления списков достаточно для представления списков любой длины. Наш список представляется следующим образом:

.( энн, .( теннис, .( том, .( лыжи, [] ) ) ) )

На рис. 3.1 изображена соответствующая древовидная структура. Заметим, что показанный выше пример содержит пустой список []. Дело в том, что самый последний хвост является одноэлементным списком:

[ лыжи ]

Хвост этого списка пуст

[ лыжи ] = .( лыжи, [] )

Рассмотренный пример показывает, как общий принцип структуризации объектов данных можно применить к спискам любой длины. Из нашего примера также видно, что такой примитивный способ представления в случае большой глубины вложенности подэлементов в хвостовой части списка может привести к довольно запутанным выражениям. Вот почему в Прологе предусматривается более лаконичный способ изображения списков, при котором они записываются как последовательности элементов, заключенные в квадратные скобки. Программист может использовать оба способа, но представление с квадратными скобками, конечно, в большинстве случаев пользуется предпочтением. Мы, однако, всегда будем помнить, что это всего лишь косметическое улучшение и что во внутреннем представлении наши списки выглядят как деревья. При выводе же они автоматически преобразуются в более лаконичную форму представления. Так, например, возможен следующий диалог:

?- Список1 = [а, b, с],

 Список2 = (a, .(b, .(c,[]) ) ).


Список1 = [а, b, с]

Список2 = [а, b, с]


?- Увлечения1 = .( теннис, .(музыка, [] ) ),

 Увлечения2 = [лыжи, еда],

 L = [энн, Увлечения1, том, Увлечения2].


Увлечения1 = [теннис, музыка]

Увлечения2 = [лыжи, еда]

L = [энн, [теннис, музыка], том, [лыжи, еда]]

Рис. 3.1. Представление списка [энн, теннис, том, лыжи] в виде дерева.

Приведенный пример также напоминает вам о том, что элементами списка могут быть любые объекты, в частности тоже списки.

На практике часто бывает удобным трактовать хвост списка как самостоятельный объект. Например, пусть

L = [а, b, с]

Тогда можно написать:

Хвост = [b, с] и L = .(а, Хвост)

Для того, чтобы выразить это при помощи квадратных скобок, в Прологе предусмотрено еще одно расширение нотации для представления списка, а именно вертикальная черта, отделяющая голову от хвоста:

L = [а | Хвост]

На самом деле вертикальная черта имеет более общий смысл: мы можем перечислить любое количество элементов списка, затем поставить символ "|", а после этого — список остальных элементов. Так, только что рассмотренный пример можно представить следующими различными способами:

[а, b, с] = [а | [b, с]] = [a, b | [c]] = [a, b, c | [ ]]

Подытожим:

• Список — это структура данных, которая либо пуста, либо состоит из двух частей: головы и хвоста. Хвост в свою очередь сам является списком.

• Список рассматривается в Прологе как специальный частный случай двоичного дерева. Для повышения наглядности программ в Прологе предусматриваются специальные средства для списковой нотации, позволяющие представлять списки в виде

[ Элемент1, Элемент2, ... ]

или

[ Голова | Хвост ]

или

[ Элемент1, Элемент2, ... | Остальные]

3.2. Некоторые операции над списками

Списки можно применять для представления множеств, хотя и существует некоторое различие между этими понятиями: порядок элементов множества не существенен, в то время как для списка этот порядок имеет значение; кроме того, один н тот же объект может встретиться в списке несколько раз. Однако наиболее часто используемые операции над списками аналогичны операциям над множествами. Среди них

• проверка, является ли некоторый объект элементом списка, что соответствует проверке объекта на принадлежность множеству;

• конкатенация (сцепление) двух списков, что соответствует объединению множеств;

• добавление нового объекта в список или удаление некоторого объекта из него.

В оставшейся части раздела мы покажем программы, реализующие эти и некоторые другие операции над списками.

3.2.1. Принадлежность к списку

Мы представим отношение принадлежности как

принадлежит( X, L)

где X — объект, а L — список. Цель принадлежит( X, L) истинна, если элемент X встречается в L. Например, верно что

принадлежит( b, [а, b, с] )

и, наоборот, не верно, что

принадлежит b, [а, [b, с] ] )

но

принадлежит [b, с], [а, [b, с]] )

истинно. Составление программы для отношения принадлежности может быть основано на следующих соображениях:

(1) X есть голова L, либо

(2) X принадлежит хвосту L.

Это можно записать в виде двух предложений, первое из которых есть простой факт, а второе — правило:

принадлежит( X, [X | Хвост ] ).


принадлежит ( X, [Голова | Хвост ] ) :-

 принадлежит( X, Хвост).

3.2.2. Сцепление (конкатенация)

Для сцепления списков мы определим отношение

конк( L1, L2, L3)

Здесь L1 и L2 — два списка, a L3 — список, получаемый при их сцеплении. Например,

конк( [а, b], [c, d], [a, b, c, d] )

истинно, а

конк( [а, b], [c, d], [a, b, a, c, d] )

ложно. Определение отношения конк, как и раньше, содержит два случая в зависимости от вида первого аргумента L1:

(1) Если первый аргумент пуст, тогда второй и третий аргументы представляют собой один и тот же список (назовем его L), что выражается в виде следующего прологовского факта:

конк( [], L, L ).

(2) Если первый аргумент отношения конк не пуст, то он имеет голову и хвост в выглядит так:

[X | L1]

На рис. 3.2 показано, как производится сцепление списка [X | L1] с произвольным списком L2. Результат сцепления — список [X | L3], где L3 получен после сцепления списков L1 и L2. На прологе это можно записать следующим образом:

конк( [X | L1, L2, [X | L3]):-

 конк( L1, L2, L3).

Рис. 3.2. Конкатенация списков.

Составленную программу можно теперь использовать для сцепления заданных списков, например:

?- конк( [a, b, с], [1, 2, 3], L ).

L = [a, b, c, 1, 2, 3]


?- конк( [а, [b, с], d], [а, [], b], L ).

L = [a, [b, c], d, а, [], b]

Хотя программа для конк выглядит довольно просто, она обладает большой гибкостью и ее можно использовать многими другими способами. Например, ее можно применять как бы в обратном направлении для разбиения заданного списка на две части:

?- конк( L1, L2, [а, b, с] ).


L1 = []

L2 = [а, b, c];


L1 = [а]

L2 = [b, с];


L1 = [а, b]

L2 = [c];


L1 = [а, b, с]

L2 = [];

no            (нет)

Список [а, b, с] разбивается на два списка четырьмя способами, и все они были обнаружены нашей программой при помощи механизма автоматического перебора.

Нашу программу можно также применить для поиска в списке комбинации элементов, отвечающей некоторому условию, задаваемому в виде шаблона или образца. Например, можно найти все месяцы, предшествующие данному, и все месяцы, следующие за ним, сформулировав такую цель:

?- конк( До, [май | После ],

 [янв, фев, март, апр, май, июнь,

  июль, авг, сент, окт, ноябрь, дек]).


До = [янв, фев, март, апр]

После = [июнь, июль, авг, сент, окт, ноябрь, дек].

Далее мы сможем найти месяц, непосредственно предшествующий маю, и месяц, непосредственно следующий за ним, задав вопрос:

?- конк( _, [Месяц1, май, Месяц2 | _ ],

 [янв, февр, март, апр, май, июнь,

  июль, авг, сент, окт, ноябрь, дек]).


Месяц1 = апр

Месяц2 = июнь

Более того, мы сможем, например, удалить из некоторого списка L1 все, что следует за тремя последовательными вхождениями элемента z в L1 вместе с этими тремя z. Например, это можно сделать так:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*