Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич
SAC — звёздчатая амакриновая клетка (ЗАК);
Bc2 — биполяры, образующие синапсы на дендрите ЗАК вблизи тела клетки;
Bc3a — биполяры, образующие синапсы на дендрите ЗАК вдали от тела клетки;
Bc5 — биполяры, образующие возбудительные синапсы на дендритах дирекционально избирательных ганглиозных клеток;
DS GC — дирекционально избирательные ганглиозные клетки, выделяющие противоположные направления движения стимулов, левая DS GC — слева направо, правая DS GC — справа налево (обозначено стрелками)
Когда свет попадает на клетки фоторецепторов, они передают сигнал биполярным клеткам [1065], затем амакриновым [1066] — и, наконец, ганглионарным [1067].
Учёные проанализировали 80 амакриновых нейронов (29 из них помогли описать игроки EyeWire) и соединённые с ними биполярные клетки. Они заметили, что разные типы биполярных клеток по-разному соединяются с амакриновыми нейронами: биполярные клетки одного типа располагаются далеко от тела (сомы) звёздчатой клетки и передают сигнал быстро, клетки другого типа располагаются близко, но сигнал передают с задержкой.
Если стимул в поле зрения удаляется от тела (сомы) звёздчатой амакриновой клетки, то первой активизируется «медленная» биполярная клетка, затем — «быстрая». Тогда, несмотря на задержку, сигналы клеток обоих типов достигают звёздчатого амакринового нейрона одновременно, он испускает сильный сигнал и передаёт его дальше ганглионарным клеткам. Если же стимул движется по направлению к соме, сигналы разных типов биполярных нейронов не «встречаются» и сигнал амакриновой клетки получается слабым [1068].
Разумеется, игра EyeWire в силу присущей ей некоторой криповатости не входит в топы рейтингов онлайн-игр, а следовательно, объём людских ресурсов, привлекаемых в рамках этого образчика гражданской науки [civil science], весьма ограничен. Однако создатели и не рассчитывали на то, что в данном проекте можно будет полагаться только на ресурсы краудсорсинга. Размеченные игроками данные были использованы для того, чтобы обучить на них соответствующие модели машинного обучения, которые затем смогут выполнять раскраску самостоятельно [1069]. Своеобразная ирония заключается в том, что в основе этих моделей лежат свёрточные нейронные сети (о них мы поговорим подробно несколько позже), созданные, в свою очередь, под влиянием научных данных, полученных в ходе изучения зрительной коры головного мозга. Так что EyeWire в некотором смысле напоминает змея уробороса, кусающего самого себя за хвост.
![Охота на электроовец. Большая книга искусственного интеллекта - image152.jpg](/BookBinary/936964/1737639267/image152.jpg)
4.2.7 Коннектомика сегодня
Чего не могу воссоздать, того не понимаю.
EyeWire не единственный из современных проектов, посвящённых развитию технологий для создания моделей коннектомов живых существ (напоминаем, что коннектом — это карта связей нейронов в нервной ткани).
Второго апреля 2013 г. администрация Президента США дала старт амбициозной частно-государственной исследовательской программе BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies, Исследование мозга через продвижение инновационных нейротехнологий), глобальной целью которой является достижение динамического понимания принципов работы мозга. Инициатива была разработана Управлением по научной и технологической политике (Office of Science and Technology Policy, OSTP) в рамках более широкой программы Neuroscience Initiative (Инициативы нейронауки) [1070]. Созданная под впечатлением от проекта «Геном человека» (Human Genome Project) BRAIN Initiative среди своих публичных целей заявляет помощь исследователям в деле изучения мозговых расстройств, таких как болезни Альцгеймера и Паркинсона, депрессии и травматических поражений мозга.
![Охота на электроовец. Большая книга искусственного интеллекта - image153.jpg](/BookBinary/936964/1737639267/image153.jpg)
Первым кирпичиком в фундаменте BRAIN Initiative стала статья Павлоса (Пола) Аливизатоса из Калифорнийского университета в Беркли и его коллег, вышедшая на страницах престижного журнала Neuron под названием «Проект карты активности мозга и проблема функциональной коннектомики» (The Brain Activity Map Project and the Challenge of Functional Connectomics) за год до старта проекта. В статье были изложены экспериментальные планы для более скромного проекта, в том числе рассмотрены методы, которые могут быть использованы для построения «функционального коннектома», а также перечислены технологии, которые необходимо будет разработать в ходе проекта. Авторы указывают, что первоначальные исследования могут быть проведены на излюбленных объектах исследователей — нематодах Caenorhabditis elegans, затем на плодовых мушках Drosophila melanogaster — обладателях сравнительно простых нервных систем. На следующем этапе исследований предлагалось перейти к рыбкам Danio rerio (известных в англоязычной литературе под именем Zebrafish — рыба-зебра), мышам и (ВНЕЗАПНО!) этрусской землеройке (она же карликовая многозубка) [1071].
Кстати сказать, эта чудесная многозубка — самое маленькое по массе тела из известных науке млекопитающих (если брать в качестве критерия длину тела, то свиноносая летучая мышь оказывается всё же немного покороче), а её мозг состоит из всего примерно миллиона нейронов. Сердечко этрусской землеройки бьётся с частотой до 1511 ударов в минуту [1072]. А с какой частотой билось бы твоё сердце, %USERNAME%, если бы ты узнал, что учёные хотят нарезать твой мозг на тонкие ломтики?
От землероек можно будет перейти к приматам, в том числе — на последнем этапе — к людям. Среди технологий, предлагаемых для разработки авторами статьи: наночастицы, которые могли бы использоваться в качестве датчиков, способных определять потенциалы действия в отдельных нейронах; нанозонды, которые могли бы служить в качестве электрофизиологических многоэлектродных массивов; многообещающие методы, основанные на синтетической биологии, и множество других прекрасных гитик [1073].
Интересен мультидисциплинарный состав авторов этого своеобразного манифеста. Аливизатос — химик и пионер в области развития наноматериалов, Миянг Чунь — биохимик, Джордж Чёрч — генетик, химик и молекулярный инженер, Ральф Гринспен и Рафаэль Юст — нейробиологи, Майкл Рукс — физик.
Что сделано сегодня из обозначенного в статье 2012-го? Не так уж мало.
Первый коннектом живого существа, а именно нематоды C. elegans, был построен в далёком 1986 г. группой исследователей во главе с биологом Сидни Бреннером из Кембриджа. Бреннер и его коллеги аккуратно нарезали миллиметровых червей на тонкие ломтики и сфотографировали каждый срез с помощью плёночной камеры, установленной на электронном микроскопе, а затем по полученным снимкам вручную проследили все связи между нейронами [1074]. Однако у C. elegans всего 302 нейрона и около 7600 синапсов. В 2016 г. команда учёных из Университета Дэлхаузи в Канаде повторила подвиг своих коллег для личинки морского оболочника Ciona intestinalis, центральная нервная система которого, как выяснилось, состояла из 177 нейронов и 6618 синаптических соединений [1075]. Однако надо заметить, что методы, используемые для построения коннектома, неэффективны для крупных нервных систем. Исследователи не задумывались всерьёз о том, чтобы приступить к осуществлению значительно более крупных проектов до 2004 г., когда физик Винфрид Денк и нейроанатом Хайнц Хорстманн из Института медицинских исследований Общества Макса Планка предложили новый метод, основанный на использовании автоматического микроскопа для разрезания и визуализации мозга, а также специализированного программного обеспечения для сбора и соединения результирующих изображений [1076].