Нассим Николас Талеб - Антихрупкость. Как извлечь выгоду из хаоса
У хрупкости толстый левый хвост, а значит, она чувствительна к пертурбациям с левой стороны распределения вероятностей.
Рис. 23. Определение хрупкости (левый график). Хрупкость – это затененная область, увеличение массы левого хвоста до некоторого уровня К рабочей переменной в ответ на любое изменение параметра исходной переменной, т. е. это по большей части «переменчивость» или что-то чуть более определенное. Мы относим все такие изменения к s-, о чем будет сказано ниже в разделе с примечаниями (где я ухитрился спрятать уравнения).
Определение антихрупкости (правый график), которое не совсем симметрично, – это зеркальное отражение левого графика для правого хвоста плюс неуязвимость левого хвоста. Изменяющийся параметр тут s+.
Суть в том, что хотя мы не всегда можем выразить распределение вероятностей сколь-нибудь точно, в наших силах выявить реакцию через эвристику благодаря «теореме переноса» (Taleb and Douady, 2012). Чтобы распознать хрупкость в отношении события, нам не обязательно знать будущую вероятность этого события.
Трансформация штанги (временной ряд)
Рис. 24. Штанга во временном ряду. Ограничение отрицательной отдачи при сохранении положительной.
Штанги (выпуклые трансформации) и их свойства в пространстве вероятностей
Графическое выражение идеи штанги
Рис. 25. Случай 1, симметрия. Когда система становится более непредсказуемой, мы переходим от одной «колокольной» кривой – первой, с узкой областью возможной отдачи, – ко второй, менее высокой, однако более растянутой. Соответственно увеличивается и вероятность положительных и отрицательных неожиданностей, то есть как позитивных, так и негативных Черных лебедей.
Рис. 26. Случай 2 (слева), хрупкость. Ограниченные приобретения, огромные потери. После увеличения уровня неопределенности в системе увеличивается вероятность в основном (иногда – только) отрицательной отдачи, строго негативного Черного лебедя. Случай 3 (справа), антихрупкость. Когда система становится хаотичнее и неопределеннее, повышается вероятность очень благоприятного исхода – и соответственно увеличивается ожидаемая отдача. С математической точки зрения это открытие эквивалентно анти-задержке самолета.
Перевод фразы жирного тони «это не одно и то же» на язык математики, или Когда путают события и связанный с ними риск
В этом примечании я объясню также, что такое «выпуклая трансформация».
Пусть f (x) – это риск, связанный с переменной x. Можно также назвать f (x) «отдачей от x», «воздействием x», даже «полезностью отдачи от x», если функция f — это функция полезности. Переменная x может обозначать что угодно.
Пример: x — мощность землетрясения по какой-то шкале в определенной местности, f (x) – число людей, погибших в результате землетрясения. Как легко заметить, f (x) более предсказуемо, чем x (если мы переселим людей из этой местности, введем новые строительные нормы и правила и т. д.).
Пример: x — количество метров, которые я преодолеваю до столкновения с землей, когда кто-то сталкивает меня с высоты x, f (x) – состояние моего здоровья после падения. Разумеется, я не могу предсказать x (или предугадать, кто именно меня столкнет), в отличие от f (x).
Пример: x — количество машин в Нью-Йорке завтра днем, f (x) – время моей поездки из пункта А в пункт Б с определенной целью. f (x) может быть более предсказуема, чем x (поезжайте на метро, а еще лучше – прогуляйтесь).
Некоторые говорят про f (x), полагая, что они говорят про x. Это проблема смешения события и связанного с ним риска. Эта ошибка появилась еще у Аристотеля и распространилась в философии вероятности повсеместно (возьмите Иэна Хэкинга).
Можно стать более антихрупким в отношении x, не понимая x, – посредством выпуклости f (x).
Ответ на вопрос «что делать в мире, который мы не понимаем?» очень прост: нужно работать с нежелательными величинами f (x).
Часто куда легче модифицировать f (x), чем узнать что-либо про x. (Другими словами, проще стать неуязвимым, чем предсказать Черных лебедей.)
Пример: если я приобретаю страховку от падения рынка (здесь x) больше чем на 20 процентов, f (x) не зависит от той части распределения вероятностей, где x падает ниже 20 процентов, и невосприимчива к изменению параметра масштаба. (Это пример штанги.)
Рис. 27. Выпуклая трансформация (f (x) – выпуклая функция от x). Разница между x и риском, который связан с x. На втором графике риск потерь отсутствует. Главное – модифицировать f (x) так, чтобы свойства x на левом графике распределения вероятностей волновали нас как можно меньше. Этот метод называется выпуклой трансформацией, иначе – «стратегия штанги».
Заблуждение «зеленого леса»: когда путают f (x) с другой функцией g (x), у которой наблюдается другая нелинейность.
Математическим языком: если мы антихрупки в отношении x, разброс (или переменчивость, или другие меры дисперсии) величины x выгоден f (x), потому что математическое ожидание асимметричного распределения зависит от дисперсии, и если распределение скошено вправо, дисперсия всегда увеличивает его ожидание (у логнормального распределения, например, формула математического ожидания включает в себя компоненту +½ σ2).
Далее, распределение вероятностей для f (x) существенно отличается от распределения вероятностей для x, особенно в условиях нелинейности.
Когда f (x) выпукла (вогнута) монотонно, f (x) скошена вправо (влево).
Когда f (x) возрастает и выпукла слева, но вогнута справа, у распределения вероятностей для f (x) более тонкие хвосты, чем у распределения для x. Так, в теории перспектив Канемана-Тверски полезность изменений благосостояния более «неуязвима», чем полезность самого благосостояния.
Почему отдача важнее, чем вероятность (специальный раздел): Если p (x) – это плотность, то математическое ожидание ʃ f (x) p (x) dx, зависит больше от f, чем от p, и чем более нелинейно f, тем больше оно зависит от f, чем от p.
Четвертый квадрант (Taleb, 2009)
Идея проста: хвостовые события нельзя рассчитать (в областях жирных хвостов), однако мы можем оценить, чем именно рискуем, если такие события произойдут. Пусть f (x) – возрастающая функция. Таблица 10 связывает ее с понятием Четвертого квадранта.
Таблица 10
Локальная и глобальная выпуклость (специальный раздел)
Ничто по своей природе не бессмертно; для любой вещи максимальный исход – это смерть. Потому явления обычно выпуклы на одном конце и вогнуты на другом.
Максимальный ущерб, который можно нанести биологическому организму, на самом деле ограничен. Вернемся к вогнутому графику в примере с большим камнем и маленькими камнями в главе 18: расширяя область значений переменной, мы увидим, что ограниченность вреда где-то обретет выпуклость. Вогнутость здесь доминирует, однако она локальна. Рисунок 28 показывает, чем может продолжиться история с большим камнем и множеством малых.
Рис. 28. На левом графике показана более широкая область значений переменной в истории с раздробленным камнем из главы 18. С какой-то точки вогнутость превращается в выпуклость с беспредельной пользой (ведущей в Крайнестан). Такая отдача возможна только с экономическими переменными, скажем, с продажами книг или чем-то, что не имеет (или почти не имеет) ограничений. Обнаружить подобный эффект в природе я не могу.
Рис. 29. Слабая антихрупкость (Среднестан) с ограниченным максимумом. Типична для природы.
Странная нелинейность (очень специальный раздел)
Следующие типы нелинейности не встречаются почти нигде, кроме как в экономике; конкретнее, область их применения ограничена сделками с деривативами.
Рис. 30. На верхнем графике изображена выпукло-вогнутая возрастающая функция, противоположная ограниченным функциям «доза-реакция», которые мы встречаем в природе. Она превращается в хрупкий (очень жирные хвосты) тип 2. Нижний график демонстрирует наиболее опасную функцию – псевдовыпуклую: локальная антихрупкость, глобальная хрупкость.