KnigaRead.com/
KnigaRead.com » Книги о бизнесе » О бизнесе популярно » Нассим Николас Талеб - Антихрупкость. Как извлечь выгоду из хаоса

Нассим Николас Талеб - Антихрупкость. Как извлечь выгоду из хаоса

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Нассим Николас Талеб, "Антихрупкость. Как извлечь выгоду из хаоса" бесплатно, без регистрации.
Перейти на страницу:

У хрупкости толстый левый хвост, а значит, она чувствительна к пертурбациям с левой стороны распределения вероятностей.


Рис. 23. Определение хрупкости (левый график). Хрупкость – это затененная область, увеличение массы левого хвоста до некоторого уровня К рабочей переменной в ответ на любое изменение параметра исходной переменной, т. е. это по большей части «переменчивость» или что-то чуть более определенное. Мы относим все такие изменения к s-, о чем будет сказано ниже в разделе с примечаниями (где я ухитрился спрятать уравнения).

Определение антихрупкости (правый график), которое не совсем симметрично, – это зеркальное отражение левого графика для правого хвоста плюс неуязвимость левого хвоста. Изменяющийся параметр тут s+.

Суть в том, что хотя мы не всегда можем выразить распределение вероятностей сколь-нибудь точно, в наших силах выявить реакцию через эвристику благодаря «теореме переноса» (Taleb and Douady, 2012). Чтобы распознать хрупкость в отношении события, нам не обязательно знать будущую вероятность этого события.

Трансформация штанги (временной ряд)

Рис. 24. Штанга во временном ряду. Ограничение отрицательной отдачи при сохранении положительной.

Штанги (выпуклые трансформации) и их свойства в пространстве вероятностей

Графическое выражение идеи штанги


Рис. 25. Случай 1, симметрия. Когда система становится более непредсказуемой, мы переходим от одной «колокольной» кривой – первой, с узкой областью возможной отдачи, – ко второй, менее высокой, однако более растянутой. Соответственно увеличивается и вероятность положительных и отрицательных неожиданностей, то есть как позитивных, так и негативных Черных лебедей.


Рис. 26. Случай 2 (слева), хрупкость. Ограниченные приобретения, огромные потери. После увеличения уровня неопределенности в системе увеличивается вероятность в основном (иногда – только) отрицательной отдачи, строго негативного Черного лебедя. Случай 3 (справа), антихрупкость. Когда система становится хаотичнее и неопределеннее, повышается вероятность очень благоприятного исхода – и соответственно увеличивается ожидаемая отдача. С математической точки зрения это открытие эквивалентно анти-задержке самолета.

Перевод фразы жирного тони «это не одно и то же» на язык математики, или Когда путают события и связанный с ними риск

В этом примечании я объясню также, что такое «выпуклая трансформация».

Пусть f (x) – это риск, связанный с переменной x. Можно также назвать f (x) «отдачей от x», «воздействием x», даже «полезностью отдачи от x», если функция f — это функция полезности. Переменная x может обозначать что угодно.


Пример: x — мощность землетрясения по какой-то шкале в определенной местности, f (x) – число людей, погибших в результате землетрясения. Как легко заметить, f (x) более предсказуемо, чем x (если мы переселим людей из этой местности, введем новые строительные нормы и правила и т. д.).


Пример: x — количество метров, которые я преодолеваю до столкновения с землей, когда кто-то сталкивает меня с высоты x, f (x) – состояние моего здоровья после падения. Разумеется, я не могу предсказать x (или предугадать, кто именно меня столкнет), в отличие от f (x).


Пример: x — количество машин в Нью-Йорке завтра днем, f (x) – время моей поездки из пункта А в пункт Б с определенной целью. f (x) может быть более предсказуема, чем x (поезжайте на метро, а еще лучше – прогуляйтесь).


Некоторые говорят про f (x), полагая, что они говорят про x. Это проблема смешения события и связанного с ним риска. Эта ошибка появилась еще у Аристотеля и распространилась в философии вероятности повсеместно (возьмите Иэна Хэкинга).

Можно стать более антихрупким в отношении x, не понимая x, – посредством выпуклости f (x).

Ответ на вопрос «что делать в мире, который мы не понимаем?» очень прост: нужно работать с нежелательными величинами f (x).

Часто куда легче модифицировать f (x), чем узнать что-либо про x. (Другими словами, проще стать неуязвимым, чем предсказать Черных лебедей.)


Пример: если я приобретаю страховку от падения рынка (здесь x) больше чем на 20 процентов, f (x) не зависит от той части распределения вероятностей, где x падает ниже 20 процентов, и невосприимчива к изменению параметра масштаба. (Это пример штанги.)


Рис. 27. Выпуклая трансформация (f (x) – выпуклая функция от x). Разница между x и риском, который связан с x. На втором графике риск потерь отсутствует. Главное – модифицировать f (x) так, чтобы свойства x на левом графике распределения вероятностей волновали нас как можно меньше. Этот метод называется выпуклой трансформацией, иначе – «стратегия штанги».


Заблуждение «зеленого леса»: когда путают f (x) с другой функцией g (x), у которой наблюдается другая нелинейность.

Математическим языком: если мы антихрупки в отношении x, разброс (или переменчивость, или другие меры дисперсии) величины x выгоден f (x), потому что математическое ожидание асимметричного распределения зависит от дисперсии, и если распределение скошено вправо, дисперсия всегда увеличивает его ожидание (у логнормального распределения, например, формула математического ожидания включает в себя компоненту +½ σ2).

Далее, распределение вероятностей для f (x) существенно отличается от распределения вероятностей для x, особенно в условиях нелинейности.

Когда f (x) выпукла (вогнута) монотонно, f (x) скошена вправо (влево).


Когда f (x) возрастает и выпукла слева, но вогнута справа, у распределения вероятностей для f (x) более тонкие хвосты, чем у распределения для x. Так, в теории перспектив Канемана-Тверски полезность изменений благосостояния более «неуязвима», чем полезность самого благосостояния.

Почему отдача важнее, чем вероятность (специальный раздел): Если p (x) – это плотность, то математическое ожидание ʃ f (x) p (x) dx, зависит больше от f, чем от p, и чем более нелинейно f, тем больше оно зависит от f, чем от p.

Четвертый квадрант (Taleb, 2009)

Идея проста: хвостовые события нельзя рассчитать (в областях жирных хвостов), однако мы можем оценить, чем именно рискуем, если такие события произойдут. Пусть f (x) – возрастающая функция. Таблица 10 связывает ее с понятием Четвертого квадранта.


Таблица 10

Локальная и глобальная выпуклость (специальный раздел)

Ничто по своей природе не бессмертно; для любой вещи максимальный исход – это смерть. Потому явления обычно выпуклы на одном конце и вогнуты на другом.

Максимальный ущерб, который можно нанести биологическому организму, на самом деле ограничен. Вернемся к вогнутому графику в примере с большим камнем и маленькими камнями в главе 18: расширяя область значений переменной, мы увидим, что ограниченность вреда где-то обретет выпуклость. Вогнутость здесь доминирует, однако она локальна. Рисунок 28 показывает, чем может продолжиться история с большим камнем и множеством малых.


Рис. 28. На левом графике показана более широкая область значений переменной в истории с раздробленным камнем из главы 18. С какой-то точки вогнутость превращается в выпуклость с беспредельной пользой (ведущей в Крайнестан). Такая отдача возможна только с экономическими переменными, скажем, с продажами книг или чем-то, что не имеет (или почти не имеет) ограничений. Обнаружить подобный эффект в природе я не могу.



Рис. 29. Слабая антихрупкость (Среднестан) с ограниченным максимумом. Типична для природы.

Странная нелинейность (очень специальный раздел)

Следующие типы нелинейности не встречаются почти нигде, кроме как в экономике; конкретнее, область их применения ограничена сделками с деривативами.


Рис. 30. На верхнем графике изображена выпукло-вогнутая возрастающая функция, противоположная ограниченным функциям «доза-реакция», которые мы встречаем в природе. Она превращается в хрупкий (очень жирные хвосты) тип 2. Нижний график демонстрирует наиболее опасную функцию – псевдовыпуклую: локальная антихрупкость, глобальная хрупкость.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*