Александр Потупа - Бег за бесконечностью
Как вы помните, первой моделью слабых взаимодействий оказалась теория бета-распада, предложенная Э. Ферми. Согласно этой теории нейтрон трансформировался в протон, излучая пару: электрон и антинейтрино. Э. Ферми в значительной степени исходил из аналогии с квантовой электродинамикой, но в его теории место фотона как бы занимала пара, состоящая из лептона и антилептона. Впоследствии его идея была расширена и позволила описать все распады сравнительно долгоживущих частиц как проявление некоторого универсального слабого взаимодействия.
Характерной особенностью этой теории является следующее представление: четыре частицы - барионы или лептоны - непременно взаимодействуют в одной точке, то есть в непосредственном контакте друг с другом. С помощью такого представления можно описать и распады частиц, и их рассеяние. Скажем, отрицательно заряженный мюон способен распадаться на электрон и пару, состоящую из электронного антинейтрино и мюонного нейтрино. В данном случае взаимодействие выглядит как контакт четырех лептонов. Это же представление позволяет описать и другой процесс, например, столкновение мюона с электронным нейтрино. В результате этого столкновения должны образоваться электрон и мюонное нейтрино.
В случае бета-распада взаимодействие выглядит как контакт двух барионов и двух лептонов. И опять на основе этого же представления можно было описать другие типы процессов, например, рассеяние электронного нейтрино на нейтроне, в результате которого возникал протон и электрон.
Обратите внимание на то, что в обоих случаях описание рассеяния возникает четкая закономерность превращения заряженных частиц в незаряженные и наоборот. Заряженный мюон трансформируется в мюонное нейтрино, а электронное нейтрино - в электрон. Или нейтрон трансформируется в протон, а электронное нейтрино - опять-таки в электрон.
Такая же закономерность наблюдается и во всех остальных известных процессах слабого взаимодействия. Отсюда и родилась интересная гипотеза: а не осуществляется ли слабое взаимодействие за счет обмена особым квантом, который как бы переносит заряд при взаимной трансформации заряженных и нейтральных частиц.
Гипотетическая частица, которую называют дубль-вэ-мезоном, или дубль-вэ-бозоном, должна быть очень тяжелой - в несколько раз тяжелее протона - и нести положительный или отрицательный электрический заряд.
А как быть в том случае, когда слабое взаимодействие осуществляется без переноса какого-либо заряда, например, когда нейтрино упруго рассеивается па электроне? Такого типа события долгое время вообще не наблюдались, но недавно было установлено, что они все-таки происходят.
Механизм такого взаимодействия может быть обусловлен еще одной гипотетической частицей зэт-мезоном (или зэт-бозоном), не несущей электрического заряда.
Если гипотетические частицы дубль-вэ- и зэт-мезоны будут открыты, то картина слабых взаимодействий станет очень похожа на электродинамическую картину. Существенная разница между ними будет обусловлена лишь различными свойствами этих мезонов и фотон. Действительно, масса фотона равна нулю, из-за этого электромагнитные взаимодействия обладают бесконечным радиусом действия. Гипотетические же переносчики слабых взаимодействий должны иметь очень большие массы, и поэтому радиус действия слабых сил должен быть очень мал, по-видимому, не более 10-15 сантиметра. Кроме того, фотон нейтрален, а дубль-вэ-мезоны способны нести заряд.
То, что эти частицы еще не открыты, связывается обычно с большой величиной их массы. Пока слабые взаимодействия, которые в чистом виде можно исследовать только с помощью нейтринных пучков, изучались в недостаточно широком интервале энергий, и в будущем мы можем надеяться на открытие дубль-вэ- и зэт-частиц.
К сожалению, модели слабого взаимодействия с гипотетическими мезонами или без них оказались еще хуже того образца, по которому они строились. В этих моделях вообще нельзя было последовательно описать процессы с участием виртуальных частиц. И такое положение в теории слабых взаимодействий сохранялось до недавних пор.
По аналогии с квантовой электродинамикой пытались строить и теорию сильных взаимодействий. Как вы помните, первоначальная идея X. Юкавы состояла в том, что сильные взаимодействия осуществляются при испускании и поглощении пи-мезона. Пи-мезон должен был играть такую же роль, что и фотон в электродинамике. Впоследствии, после открытия ка-мезонов и резонансов, эта идея несколько расширилась, но оказалась все равно не слишком последовательной.
Беда в том, что интенсивность сильных взаимодействий примерно в 1000 раз больше, чем электромагнитных, то есть константа связи типа "альфа" в данном случае больше единицы. Из-за этого получалось так, что все неприятности, которые в электродинамике были спрятаны на фантастически малых расстояниях, теперь уже должны были проявиться на расстояниях, вполне доступных эксперименту.
Расчеты по "квантовой мезодинамике" - так называлась квантовая теория взаимодействия мезонов и нуклонов - не объясняли наблюдаемых закономерностей. С другой стороны, экспериментальные работы по физике сильных взаимодействий развивались в послевоенный период чрезвычайно быстро. Ведь именно сильные процессы наиболее удобны для наблюдений - у них очень высокая интенсивность, и подавляющее большинство событий, возникающих при падении пучка ускоренных протонов на мишень, как раз и происходит за счет сильных взаимодействий. Неуспех электродинамики в качестве эталона теорий породил стремление к созданию новых идей, неизвестных физике прошлого.
В начале 60-х годов некоторые физики выступили с весьма красивой и необычной программой "ядерной демократии". Пожалуй, наиболее активным сторонником этой программы оказался американский теоретик Дж. Чью, ученик Э. Ферми, сделавший очень много для ее развития и разъяснения основных ее путей.
А идеи эти были таковы. Среди адронов нет выделенных частиц; все они равноправны, неэлементарны и представляют собой просто различные состояния адронной материи.
В этом пункте идеи "демократии" наблюдаемых адронов полностью согласовывались с точкой зрения сторонников, скажем, кварковой модели, которые тоже считали адроны неэлементарными и равноправными. Но в дальнейшем пути расходились. Настоящая "ядерная демократия" отвергала всякие попытки представить адроны как различные "кварковые атомы".
Общая философия Дж. Чью и многих других физиков, разделявших его позиции, состояла в том, что эпоха безграничного атомизма кончилась, и гипотезы атомоподобного устройства адронов следует сдать в архив. Основной базой служил, разумеется, простой факт - раз никаких составляющих частей, субэлементарных частиц или кварков ни в одном из многочисленных опытов выделить не удалось, то имеет ли смысл в таком случае говорить об устройстве адронов из каких-то особых привилегированных частиц? Не проще ли считать, что адронная часть микромира основана на демократических принципах, то есть реальные адроны как бы сами устанавливают законы своего бытия?