KnigaRead.com/

Неизвестен Автор - Мозг (сборник)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн неизвестен Автор, "Мозг (сборник)" бесплатно, без регистрации.
Перейти на страницу:

Исследования, предпринятые ЛеМэй и ее сотрудниками, показали, что распределение асимметрий у левшей иное, чем у правшей. У правшей и, значит, у большинства людей правая сильвиева борозда расположена выше левой в 67% случаев, левая борозда выше в 8%, и обе борозды находятся на одинаковой высоте в 25% случаев. У 71% левшей сильвиевы борозды примерно симметричные; у остальных правая борозда чаще расположена выше (21% против 7). Асимметрии, наблюдаемые с помощью томографии, также по-разному распределяются у правшей и левшей. У части населения с доминирующей левой рукой асимметрия менее выражена. Эти данные находятся в качественном согласии с теорией Аннетт.

Если такие узко ограниченные функции, как узнавание лиц, обеспечиваются специфическими нейронными сетями мозга, то кажется вероятным, что многие другие функции представлены аналогичным образом. Так, например, одна из главных целей воспитания детей - выучить их набору высоко дифференцированных реакций на эмоциональные стимулы, такие, как гнев и страх. Ребенок должен также научиться подходящим реакциям на стимулы из своей внутренней среды, такие, как голод или ощущение наполнения мочевого пузыря и кишечника. Большинство детей научается этим типам поведения точно так же, как они научаются языку, на основании чего можно предположить, что и тут существуют процессоры специального назначения. К настоящему времени о таких нейронных системах мало что известно. На самом деле, даже если картирование специализированных зон будет продолжаться, на повестку дня должна быть поставлена следующая главная задача-задача описания их внутренних операций.

С. КИТИ

Заболевания человеческого мозга

Они могут быть следствием наследственного нарушения обмена, сосудистого заболевания, инфекции, опухоли, травмы. При исследовании психических заболеваний важны отношения между генетическими факторами и факторами внешней среды

В такой сложной структуре, как человеческий мозг, может возникнуть множество нарушений. Удивительно то, что у большинства людей мозг работает эффективно и непрерывно дольше шестидесяти лет. Это говорит о пластичности, избыточности и самовосстанавливающейся природе его механизмов. Но дело в том, что в мозгу иногда нарушается его структурная архитектоника или электрические и химические процессы. Более ста лет назад патологи уже умели обнаруживать заболевания, связанные с повреждением крупных анатомических структур мозга и возникающие в результате кровоизлияния, компрессии, смещения, воспаления, дегенерации и атрофии. Микроскоп и избирательное окрашивание дали возможность увидеть, как морфологическое повреждение вызывает голодание, дегенерацию и гибель нейронов.

Компьютерная аксиальная томография (КАТ) использует рентгенограммы, сделанные под разными углами, с целью получения картины головного мозга в поперечном разрезе. Инъекция йодистого препарата в венозную систему усиливает контраст. На кадрах а и б для выявления плотного сгустка крови в пространстве между мозгом и черепом иод был не нужен. Кровоизлияние произошло от удара тупым орудием по этой части черепа. По диагонали от сгустка видно кровоизлияние на поверхности мозга или непосредственно под поверхностью; это кровоизлияние вызвано повреждением мозга по механизму "противоудара" (contre-coup). Желудочки (в центре) сужены из-за набухания ткани мозга. На кадре в препарат иода выявил опухоль (в центре внизу) у больного с метастазами рака. Справа от узла опухоли - нормальная вена, которая отчетливо видна благодаря контрастному веществу - введенному в кровь иоду. Желудочки смещены набуханием тканей вокруг опухоли. На кадре г менингиома (доброкачественная опухоль) без иода едва видна. Внутри опухоли лежит небольшой островок кальция. Гиперостоз, разрастание кости вблизи опухоли, характерно для менингиомы. На кадре д под действием иода та же самая опухоль стала видна гораздо лучше. Тонкая белая линия, пересекающая опухоль, проведена сканирующим аппаратом с целью измерения. На кадрах е и ж злокачественная опухоль (в середине) без иода едва видна, но на кадрах з и и, полученных с применением иода, она ясно выделяется в виде пятнистого участка. Желудочки смещены, и границы их зазубрены. На кадре е кальцинированный эпифиз (в середине) тоже слегка смещен. Усиленные иодом белые кольцевые зоны характерны для злокачественной опухоли. Девять кадров КАТ любезно предоставлены Ф. Ходжесом III (F. Hodges III) из Медицинской школы Университета Джонса Гопкинса.

Глиальная клетка, которая вырабатывает и обновляет жироподобный слой миелина, образующий оболочку аксонов в центральной нервной системе, может играть роль в расстройствах функции головного мозга. А. Электронная микрофотография нормальной глиальной клетки; это сравнительно темная клетка с плотно упакованными внутриклеточными органеллами, в том числе митохондриями, шероховатым эндоплазматическим ретикулумом и четко очерченным аппаратом Гольджи (рядом дана карта органелл). В этой нормальной клетке хроматин - носитель генетического материала - равномерно распределен по всему ядру. На периферии клетки лежат части нескольких миелинизированных аксонов; миелин является прямым продолжением специализированной цитоплазматической мембраны глиальной клетки. Б. Глиальная клетка больного хроническим лимфатическим лейкозом. Органеллы клетки сильно разрушены. Клетка, находящаяся в ткани, взятой при аутопсии, отличается увеличенным и смещенным ядром, конденсированным хроматином и наличием многочисленных вирусных частиц, уничтожавших клетку. В результате миелин аксонов не обновлялся. Постепенная демиелинизация основных нервных путей привела к развитию симптомов болезни. Приблизительно за четыре месяца до смерти больной жаловался на ухудшение зрения (что закончилось слепотой в левом поле зрения), на то, что он не различает лиц и не может читать. В конце наступила полная слепота, некоторая спутанность сознания с двусторонним парезом. В. Глиальная клетка в ткани, взятой при аутопсии у больного подострым склерозирующим панэнцефалитом. Отдельные органеллы в клетке неразличимы, хотя близлежащие миелинизированные аксоны еще видны. Хроматин образовал комки и сдвинут частицами, характерными для парамиксовируса. Электронные микрофотографии получены Дж. Волынским (J. Wolinsky) из Медицинской школы Университета Джонса Гопкинса.

В течение многих лет препятствием для изучения заболеваний мозга служило отсутствие способов исследования живого мозга. То немногое, что было известно о таких болезнях, явилось результатом посмертных исследований. Открытие рентгеновских лучей в конце XIX в. позволило ученым заглянуть в живой мозг. Теперь есть возможность обнаруживать грубые структурные разрушения, касающиеся желудочков головного мозга, при помощи пневмоэнцефалографии, т.е. рентгенологической методики, при которой жидкость, окружающая мозг и наполняющая его желудочки, замещается воздухом, что позволяет получить картину их формы. При другом методе - церебральной ангиографии - в кровь вводят рентгеноконтрастное вещество и это дает возможность видеть на рентгенограмме патологическое смещение кровеносных сосудов мозга. Обычное рентгенологическое исследование при всей своей ценности страдает одним крупным недостатком: на проявленной пленке рентгенографические проекции патологически измененных областей могут наложиться на проекции нормальных структур, из-за чего трудно или даже невозможно отличить их друг от друга. Это особенно дает себя знать при одинаковой проницаемости соседних структур для рентгеновских лучей, как, например, в случае опухоли, окруженной нормальной тканью такой же плотности.

Создание метода компьютерной аксиальной томографии (КATI позволило преодолеть этот недостаток. КАТ-сканирование - это особая методика, при которой сопоставляются многочисленные рентгеновские снимки, сделанные под разными углами, с целью получения изображения внутренней структуры головного мозга в поперечном сечении. Такое сканирование выявляет увеличение или атрофию нормальных структур и любые патологические образования.

В середине нашего столетия возникли электрические методики, ставшие важными инструментами исследования мозга. Сообщения, получаемые мозгом от органов чувств, директивы, которые он им посылает, и сообщения между миллиардами нейронов в самом мозгу - все они передаются с помощью электрических сигналов. Электрические поля у поверхности мозга улавливаются и усиливаются электроэнцефалографом. Это позволяет определить специфическую локализацию источников нарушения электрической активности.

В течение последних двух десятилетий изучение функции мозга распространилось на химические процессы. Как мозг использует энергию, можно исследовать, измеряя кровоток и использование кислорода из глюкозы. Благодаря недавним работам Н. Лассена (N. Lassen) из Клиники Биспебьерга в Копенгагене и Д. Ингвара (D. Ingvar) из Копенгагенского университета появилась возможность наблюдать на рентгеновском экране, как при таких специфических видах умственной деятельности, как чтение вслух или чтение про себя, быстро меняется кровообращение в разных участках мозга. Л. Соколов (L. Sokoloff) с сотрудниками из Национального института охраны психического здоровья разработали приемы для количественной оценки метаболизма глюкозы в любой точке мозга. Поскольку функциональная активность тесно связана с интенсивностью кровотока и использованием глюкозы, такие методики служат средством для картирования живого мозга в отношении функционирования его компонентов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*