Николай Друзьяк - Как продлить быстротечную жизнь
Что же отличает «бессмертную» клетку от других клеток? «Бессмертная» стволовая клетка ничем внутренне не отличается от порождаемых ею диффиренцированных клеток. Слово «бессмертие» больше характеризует будущую судьбу дочерних стволовых клеток, а не их внутреннюю природу. По своим свойствам они все могут быть стволовыми клетками, но многие из них становятся смертными только потому, что теряют контакт с базальной мембраной и где-то на пути своего развития их внутренняя характеристика настолько изменяется, что быть стволовыми они уже не могут. Например, эритроциты развиваются тоже из стволовых клеток, но в процессе своего развития и превращения в эритроциты они даже теряют свое ядро, поэтому в дальнейшем они никак не могут делиться самостоятельно.
Однако в слове «бессмертие» заключен и более глубокий смысл, касающийся стволовых клеток. Они закладываются еще в эмбриональном развитии организма, и на них возложена миссия поставки новых клеток для всех нужд организма – и для роста, и для ремонта, и для обновления. Поэтому они должны быть и постоянно обновляемыми, и не прекращающими свою жизнь. В этом их «бессмертии» и кроются истоки всех раковых заболеваний.
Во 2-й главе речь уже шла о том, что при плохом кислородном обеспечении (при гипоксии) клетка может существовать достаточно длительное время, но делиться при этом условии она уже не сможет. Для стволовой клетки невозможность делиться равнозначна ее гибели – так она запрограммирована. Поэтому в условиях длительной гипоксии стволовые клетки могут существовать только в режиме бескислородного дыхания. При этом они практически не делятся, так как плохо обеспечиваются энергией.
Хочу обратить внимание читателей и на то обстоятельство, что функционально аэробное и анаэробное дыхание выполняется разными органами клетки.
Большая часть массы клетки приходится на цитоплазму. Последняя выглядит как довольно аморфное гелеподобное вещество, в котором рассеяны быстроперемещающиеся в разных направлениях отдельные частицы. Но в действительности цитоплазма более высоко организована, чем это может показаться, исходя лишь из поверхностного взгляда на клетку. С помощью электронного микроскопа в ней обнаруживается множество разнообразных органелл, каждая из которых содержит специфический набор белков и выполняет определенную функцию. Цитоплазма, окружающая эти органеллы, называется цитозолем. Большинство реакций промежуточного обмена происходит в цитозоле. Термин «промежуточный обмен» относится к целому ряду химических реакций, посредством которых клетка расщепляет одни молекулы, запасая часть их химической энергии в форме АТФ, и синтезирует другие молекулы, служащие предшественниками макромолекул, необходимых для функционирования и роста клетки. Цитозоль занимает до 55 % общего объема клетки и содержит тысячи ферментов, катализирующих реакции гликолиза (процесс расщепления глюкозы в отсутствии кислорода с помощью ферментов), а также биосинтеза жирных кислот, нуклеотидов и аминокислот. Около 20 % цитозоля приходится на белок, так что цитозоль представляет собой скорее высокоорганизованную желеобразную массу, нежели просто раствор молекул ферментов.
Как видим, анаэробное дыхание происходит только в цитозоле. А где же происходит кислородное дыхание?
Кислородное дыхание осуществляется в особых органеллах – митохондриях. Последние осуществляют кислородное дыхание и окислительное фосфорилирование (основной функцией метохондрий является сопряжение аэробного процесса окисления с синтезом АТФ), продуцируют энергию, необходимую для функционирования клетки. Они во многом похожи на свободноживущие организмы – по форме и размеру напоминают бактерии, содержат ДНК и размножаются делением. Именно митохондрии ответственны за кислородное дыхание – ни в каких других частях клетки этот процесс не происходит. Митохондрии служат одновременно и силовой станцией клетки, и местом, где происходит окончательное окисление атомов углерода и водорода молекул питательных веществ. Митохондрии – это те центры, к которым ведут все катаболические пути, независимо от того, что служит для них первоначальным субстратом – сахара, жиры или белки. И если по какой-то причине в клетку перестает поступать кислород, энергоснабжение последней происходит только в результате анаэробного дыхания.
Митохондрии почти всех типов клеток животных построены по одному принципу, возможны лишь небольшие отклонения в деталях. Продолжительность жизни митохондрий сравнительно невелика – от 9 до 12 суток.
Митохондрии являются весьма неустойчивыми внутриклеточными органеллами, они раньше других реагируют на возникновение каких-либо патологических состояний (гипоксия, интоксикация, голодание или ионизирующее облучение). Их число значительно уменьшается независимо от причин, вызвавших патологическое состояние. Например, даже в процессе голодания их число может значительно сократиться. Изменения, происходящие с митохондриями, довольно стереотипны (повторяющиеся) и неспецифичны.
При различных повреждающих воздействиях на клетки (воздействие крайних температур, лучистой энергии, кислот, щелочей, солей тяжелых металлов, наркотических средств и др.) в первую очередь гибнут митохондрии. При этом из клеток уходят ионы калия, фосфаты, и накапливаются ионы натрия и хлора, повышаются сорбционные (поглощающие) свойства цитоплазмы, и в клетках начинает преобладать анаэробный гликолиз. А это и есть первый признак начала ракового заболевания.
Кстати, к повреждающим факторам можно отнести и возраст – с возрастом нарастает количество внутриклеточного натрия и уменьшается количество внутриклеточного калия. И точно так же с возрастом увеличивается частота онкологических заболеваний. Например, смертность от рака толстого кишечника в США в зависимости от возраста иллюстрируется такими цифрами: в 30 лет – нет ни одного случая на 1 млн человек, в 40 лет – 20 случаев, в 50 лет – 50, в 60 лет – 100, в 70 лет – 200, а в 80 лет – 360 случаев на 1 млн человек. Но не исключено, что не возраст влияет на нарушение ионного состава в клетках, а какие-то наши погрешности в образе жизни, которые накапливаются с годами и влияют на жизнь наших клеток. Исследования показали, что при старении уменьшается активность дыхательных ферментов, меньше становится и митохондрий, в которых генерируется энергия. Как видим, с уменьшением числа митохондрий в клетках нам следует ожидать перерождения таких клеток в раковые.
И если на первых стадиях кислородного голодания стволовые клетки находятся в условиях энергетического голода и практически прекращают процесс деления, то после гибели митохондрий и поступления в клетки натрия и хлора поглощающие свойства клеток резко возрастают, в них в большом количестве начинает поступать глюкоза и выработка энергии в клетках резко возрастает за счет бескислородного дыхания, и клетки возобновляют процесс деления. Но в бескислородном режиме уже не происходит дифференциации клеток, и поэтому каждая делящаяся стволовая клетка дает две дочерние стволовые клетки. Идет всего лишь рост стволовых клеток.
Хочу обратить внимание читателей и на то обстоятельство, что кровеносные капилляры в слой базальных (или стволовых) клеток не проникают и что кровоснабжение этих клеток осуществляется из подлежащей соединительной ткани через базальную мембрану. И если базальная мембрана будет покрыта солями кальция, что случается при избытке этих солей в крови, то питание стволовых клеток лишь усугубится.
Таким образом, главной причиной раковых заболеваний следует считать длительное кислородное голодание стволовых клеток. Поэтому такие заболевания возникают только там, где много стволовых клеток. А это легкие, кожный покров, молочные железы, желудок и вся пищеварительная система, а также кроветворная система. Кроме гипоксии, немаловажными факторами для возникновения раковых заболеваний служат все канцерогенные вещества, которые также действуют в первую очередь на митохондрии стволовых клеток (классический пример – курение и рак легких), радиация и ультрафиолетовое облучение.
Приведу любопытный пример. Если клетки человека обработать антибиотиком, например тетрациклином или хлорамфениколом, то после одного-двух делений их рост прекратится. Это связано с ингибированием митохондриального белкового синтеза, приводящего к появлению дефектных митохондрий и, как следствие, к недостаточному образованию АТФ. Длительное лечение большими дозами хлорамфеникола может привести к нарушению кроветворной функции костного мозга (может подавить образование эритроцитов и лейкоцитов), а длительное применение тетрациклина – к повреждению кишечного эпителия. В обоих случаях нарушается биогенез (образование белков) в митохондриях и они гибнут.
А почему стволовые клетки могут подвергаться длительному кислородному голоданию (гипоксии), нам хорошо известно из 2-й главы, а также из 4-й, 7-й, 8-й, 10-й, 11-й и 18-й глав. Не последнюю роль в создании гипоксии играет высокая концентрация солей кальция в крови. Например, для рака молочных желез всегда характерны небольшие отложения солей кальция – микрокальцинаты. Понятно, что если образовались отложения солей, то последних было более чем достаточно в крови.