KnigaRead.com/
KnigaRead.com » Документальные книги » Публицистика » Александр Долгин - Манифест новой экономики. Вторая невидимая рука рынка

Александр Долгин - Манифест новой экономики. Вторая невидимая рука рынка

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Долгин, "Манифест новой экономики. Вторая невидимая рука рынка" бесплатно, без регистрации.
Перейти на страницу:

Оттолкнемся от недостатков, присущих нынешним методам обработки частных суждений или потребительских реакций. Взять, к примеру, рейтинги: не ясно, чье мнение они отражают. Рейтинг служит производителю, служит толпе, а для индивида он является очень приблизительным ориентиром. Ведь для того, чей вкус отклоняется от некоего среднестатистического шаблона, рейтинг всегда либо занижен, либо завышен по отношению к его собственному мнению о данном предмете. Возьмите лондонский музыкальный «Топ 20» — с большой вероятностью вы не обнаружите для себя ни одной цепляющей песни. Таков любой чарт, выводимый из статистики продаж, за которой стоит одновременно и консерваторская профессура, и меломаны из подворотни (с естественным перекосом в сторону последних). Чтобы персонализировать рейтинг, надо каким-то образом отсеять суждения людей, отличающихся друг от друга. Для пользы дела важней вычленить похожих и адресно довести до них мнения их единомышленников. Может оказаться, к примеру, что из миллионной аудитории какого-то фильма нашими глазами его посмотрели всего пятьсот человек. Впечатление этих 0,05 % и должно, главным образом, нас интересовать.

Главное в коллаборативном механизме — это то, как подбираются группы похожих людей. В основе программного алгоритма — гипотеза, что совпадение в настоящем выводимо из совпадения в прошлом. В отличие от всего, что делалось ранее, близость идентифицируется не по результатам какого-либо психологического тестирования и не по социодемографическим данным (хотя это и не исключется), а на основании прямо выраженного отношения к одним и тем же объектам потребления, событиям, текстам…

Если два человека прочли энное количество одних и тех же книг (посмотрели фильмов, послушали мелодий…) и схоже их оценили, то их взгляды до определенной степени близки. Следовательно, им будет полезно обменяться суждениями, в том числе по объектам, с которыми один уже знаком, а другой нет. Такова (не)хитрая эвристика, лежащая в основе коллаборативного метода. Чтобы получать рекомендации, человек оценивает некоторое количество объектов (несколько десятков, а лучше — сотен) — так складывается его профиль предпочтений, «вкусовой слепок». Система сравнивает профили разных людей и выявляет похожие. Логика коллаборативной фильтрации проста, хотя на практике для вычислений применяются сложнейшие алгоритмы, — одних только подходов к определению меры близости существует не один и не два. В группе единомышленников оказываются те, кто посмотрел, прочитал, опробовал то, с чем их визави (вкусовые соседи) еще не знакомы. На основе оценок первых рассчитывается прогноз для вторых. В другой раз реципиенты и доноры информации меняются ролями. Если обработать суждения по многим объектам и областям потребления — литературе, кино, музыке, брендам и прочим сегментам, в том числе околокультурным и «чисто» утилитарным (коих на потребительских рынках сегодня днем с огнем не сыскать) — можно надежно выявить общность между людьми и использовать ее при расчетах прогнозов и персональных рекомендаций. Для практического применения этой идеи необходимо: 1) собрать множество оценок от большого числа людей; 2) сформировать для каждого референтную группу людей с близкими суждениями/оценками; 3) синтезировать прогнозы; 4) адресно довести результат до сведения (и по запросам) вкусовых соседей. Все это в настоящее время делается на рекомендательных сайтах, построенных на базе коллаборативной фильтрации.

Как нередко бывает, поставить задачу труднее, чем решить ее. Как только потенциальный спрос на субъективную информацию осознан, считай — полдела сделано. Все последующее — вопрос не тривиальной, но техники. В целом понимание того, как следует обращаться с субъективным опытом, — это фундаментальное открытие. Оно масштабнее, чем собственно изобретение и отладка коллаборативной технологии, позволяющей задействовать скрытый в людях информационный ресурс.

Потребители субъективной информации — это, по сути, те самые члены клубов, главные фигуранты новой экономики. Чье-то индивидуальное суждение представляет интерес для тех, кто близок к нему по вкусу, мировоззрению, интересам. Если некто обнаружит что-то ценное, об этом имеет смысл уведомить единомышленников — придет время, они тоже поделятся своими находками. При этом вопрос об объективном качестве информации (под которым обычно понимается истинность, новизна, полнота и проч.) отходит на второй план. Информация может быть объективной, но не актуальной, не интересной, не понятной, избыточной и в результате — невостребованной. При решении целого ряда задач гораздо важнее оказываются субъективные критерии, завязанные на вкусы, интересы, бэкграунд. Дело за тем, чтобы в промышленных масштабах выявлять круги единомышленников и налаживать обмен субъективно значимой информацией, извлекаемой из потребительского опыта. Еще каких-нибудь десять лет назад вызывало сомнение, хватит ли вычислительной мощности компьютеров для проведения подобных высоконагруженных расчетов, однако сегодня этот вопрос снят с повестки дня.

Коллаборативную фильтрацию можно отнести к обширному классу коллективных действий, за которыми закрепилось название «краудсорсинг» (crowdsourcing). Термин, введенный журналом «Wired», происходит от английского crowd — «толпа» и sourcing — «подбор ресурсов» и означает использование коллективного разума и труда добровольцев для различных полезных целей, в том числе, коммерческих. Метод краудсорсинга используется для опознания преступников, расшифровки диктофонных записей, перевода текстов. Компания Txteagle, например, привлекала в Кении активистов для перевода инструкций к телефонам Nokia с английского на примерно 60 местных языков. Другой нашумевший прецедент — перевод в онлайне седьмой книги о Гарри Потере, сделанный для своих читателей китайскими, бразильскими и русскими волонтерами.

Порой «толпу» мобилизуют не только для решения технических, но и творческих задач. В этих случаях ставка делается на мозговой штурм, от которого ожидается куда большее разнообразие в подходах, чем обычно по силам штатным сотрудникам. Например, компания Procter&Gamble вывешивает на сайте стоящие перед ней задачи, приглашая стотысячную армию добровольцев поломать голову и обещая в случае успеха денежное вознаграждение. Известными формами краудсорсинга являются программистские проекты с открытыми исходными кодами, такие как Linux, MySQL или браузер Firefox. В «Википедии» тоже используется этот принцип. В ряде случаев люди участвуют в краудсорсинг-проектах помимо своей воли и желания. К примеру, посещая те или иные сайты, каждый из нас помогает работе поисковых алгоритмов. Так что вольные или невольные объединения, работающие на общее благо, возникли не сегодня и не вчера. Но с развитием коммуникаций их значение многократно возрастает. Для краудсорсинга, очевидно, нужен организатор, ставящий задачу и привлекающий людей, а также информационная система, позволяющая исполнителям выбирать кусочек задачи и предъявлять результат, а в итоге каждому пользоваться плодами выполненной сообща работы. Скептики указывают на то, что этой «муравьиной технологии» не по плечу высокие достижения, у нее низкий потолок — в этом, конечно, есть доля правды. (Дж. Шуровецки в книге «Мудрость толпы» приводит примеры того, как масса не справляется с задачей или приходит к неверным выводам, тем не менее он считает ее способной на многое.) Понятно, что «мудрую толпу» не создашь на заказ со стопроцентной гарантией. Однако чем вставать в глухую оппозицию по отношению к краудсорсингу, стоит пробовать ориентировать профессионалов на постановку таких задач, которые позволят толпе проявить свои сильнейшие стороны, а также на координацию усилий и селекцию идей…

Иногда краудсорсинг толкуют очень широко, тогда под этот феномен можно подвести очень и очень многое — вплоть до выработки общественных норм поведения или системы стастусных отличий. Коллаборативную фильтрацию тоже можно представить как частный случай краудсорсинга: на сайтах web 2.0 и web 3.0, где контент создается самими пользователями, используются распределенные неспециализированные трудовые ресурсы. К инструментарию третьего веба (он представляет собой сочетание user generated и user certificated, т. е. пользовательской активности в производстве контента и пользовательской же экспертизы качества этого контента) прибегают коммерческие фирмы, главным образом, чтобы определить, какую модель запустить в производство. К примеру, Threadless, чикагская компания по производству футболок, свела разработку дизайна к онлайн-конкурсу, в ходе которого энтузиасты предлагают креатив и сами же народным голосованием отбирают лучшие образцы, которые запускаются в производство. Их авторы получают премии и призы, главный из которых — возможность увидеть свою работу на публике. Этот прием считается первопроходческим образцом краудсорсинга. Японская компания Muji аналогичным способом разрабатывает мебель, с той поправкой, что идеи, конденсированные «из воздуха», доводятся до кондиции профессиональными дизайнерами.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*