Алексей Турчин - Война и еще 25 сценариев конца света
Необходимыми условиями для накопления растворенного метана в океанских глубинах является аноксия (отсутствие растворенного кислорода, как, например, в Черном море) и отсутствие перемешивания. Также способствовать процессу может дегазация метангидратов на морском дне. Для того чтобы вызвать катастрофические последствия, отмечает Рескин, достаточно дегазации даже небольшого по площади участка океана.
Примером катастрофы подобного рода стала внезапная дегазация озера Ниос, которая в 1986 году унесла жизни 1700 человек. Рескин отмечает, что вопрос о том, какова ситуация с накоплением растворенных газов в современном мировом океане, требует дальнейших исследований.
Глава 17
Теорема о конце света и другие логические парадоксы, связанные с человеческим вымиранием
Одним из наиболее сложных для понимания моментов, связанных с рисками человеческого вымирания, является так называемая Теорема о конце света (Doomsday argument, сокращенно DA). В зависимости от ее истинности или ложности наша оценка вероятности человеческого вымирания может меняться.
Существует множество несовместимых версий теоремы, и не наблюдается никакого консенсуса между учеными, ее исследующими.
DA имеет статус научной гипотезы – это значит, что работы, посвященные ей, публикуются в ведущих научных и философских журналах (например, в Nature) в разделе «гипотезы». Следовательно, она не является ни апокалиптической фантазией, ни псевдонаучной теорией вроде теории о внезапном смещении полюсов Земли. Вместе с тем она довольно сложна, как специальная теория относительности, и, в отличие от взрыва атомной бомбы, ее невозможно представить визуально.
В основе этой теоремы лежит так называемый принцип Коперника, который гласит, что мы являемся обычными наблюдателями Вселенной и находимся в обычных условиях. Или, иначе говоря, я нахожусь в середине некоего процесса, и вряд ли в самом его начале или в самом конце. Этот принцип применим к любым процессам и явлениям.
Например, я могу с большой долей уверенности утверждать, что читатель данного текста не читает его ни в 1 час ночи 1 января, ни в 11 вечера 31 декабря, а где-то в середине года. Я также со значительной вероятностью могу утверждать, что фамилия читателя не начинается на Аа и на Яя. Или например, если я ткну пальцем в случайного человека на улице, очень маловероятно, что этот человек будет жить свой первый или свой последний день на Земле. Точно так же очень маловероятно, что мой читатель сейчас находится на экваторе или на Северном полюсе, а скорее всего – где-то между ними. Все это кажется самоочевидным.
Когда случится настоящий Конец ИсторииТеорема о конце света применяет приведенные выше рассуждения к моему месту в человеческой истории. То есть скорее всего я живу в ее середине, а не в самом начале и не в самом конце. И крайне маловероятно, что мой читатель является Адамом или его ближайшим родственником, или последним выжившим человеком в атомном бункере.
Отсюда нетривиальный вывод: зная свое нынешнее положение в истории человечества как среднее, можно приблизительно оценить будущее время существования человечества. То есть человечество проживет еще примерно столько же, сколько оно прожило в прошлом. Поскольку виду Homo sapiens на сегодня 100 000 лет, то можно предположить, что он просуществует еще примерно такое же время.
Если это рассуждение верно, то человечество никогда не станет цивилизацией, которая в течение миллиардов лет покорит всю Галактику.
Но не особенно пугающий результат – гибель через 100 000 лет – мы получаем, только пока рассматриваем лишь возраст человечества в годах. Однако для более точного вычисления среднего положения нам надо использовать не продолжительность существования человечества, а учесть тот факт, что плотность населения постоянно росла, и поэтому гораздо вероятнее родиться в период, когда население Земли исчисляется миллиардами, как в XX веке. Для этого надо использовать не дату рождения человека, а его ранг рождения, то есть его как бы порядковый номер в счету родившихся людей.
До настоящего времени на Земле родилось примерно 100 миллиардов людей. Если верно, что я нахожусь примерно в середине общего числа людей, которое когда-либо будет жить на Земле, то в будущем, до человеческого вымирания, родится примерно еще порядка 100 миллиардов людей (точная связь вероятности и ожидаемого числа задается формулой Готта). Однако, учитывая то, что население Земли приближается к 10 миллиардам, искомые следующие 100 миллиардов будут набраны менее чем за тысячу лет. Итак, тот факт, что скорее всего я нахожусь в обычных условиях, означает, что шансы для человечества погибнуть в ближайшую тысячу лет весьма велики – такова наиболее простая формулировка Теоремы о конце света.
Вероятно, большинство читателей начали испытывать глубокое чувство протеста против приведенных выше рассуждений, усмотрев в них множество логических ошибок и издевательств над теорией вероятности. Кто-то уже вспомнил анекдот про шансы встретить динозавра на улице (50 на 50 – или встретишь, или нет). Это естественная реакция. Большинство ученых также приняло данную теорию в штыки. Однако проблема в том, что эта теория не имеет простых опровержений. То есть их существуют десятки, но ни одно из них не имеет общезначимой убедительной силы, и всегда находятся контраргументы.
Впервые данная идея пришла в голову Б. Картеру в начале 80-х годов, одновременно со знаменитым «антропным принципом». Однако он не решился ее опубликовать как слишком смелую. Позже ее опубликовал Дж. Лесли в своей книге «Конец света» и ряде статей. В формулировке Картера – Лесли Теорема о конце света имеет более сложный вид с использованием базовой в теории вероятностей теоремы Байеса, однако окончательный результат получается еще хуже, чем в приведенном упрощенном изложении – то есть вероятность человеческого выживания оказывается еще ниже.
Однако пока Картер колебался, публиковать ли свое открытие, к похожим выводам, но в другой, более простой математической форме пришел Ричард Готт, который опубликовал в авторитетном журнале Nature гипотезу о том, что, зная прошлое время существования объекта, можно дать вероятностную оценку того, сколько времени он еще просуществует – при условии, что я наблюдаю данный процесс в случайный момент времени его существования.
Например, если я возьму случайного человека с улицы, то я могу дать, используя формулу Готта, следующую оценку вероятной продолжительности его будущей жизни: с вероятностью в 50 процентов он умрет в период времени, равный от одной трети до трех его текущих возрастов. Например, если человеку 30 лет, то я могу с уверенностью в 50 процентов утверждать, что он проживет еще от 10 до 90 лет, то есть умрет в возрасте от 40 до 120. Безусловно, это верное, но крайне расплывчатое предсказание. Разумеется, если взять 90-летнего старика или годовалого младенца, то предсказание будет неверным – однако нельзя намеренно выбирать контрпримеры, так как условием применимости формулы Готта является выборка случайного человека.
Точно так же тот факт, что средняя скорость молекул газа в воздухе составляет 500 метров в секунду, не опровергается тем, что некоторые молекулы имеют скорость в 3 километра в секунду, а другие неподвижны – потому что статистические высказывания не опровергаются отдельными примерами.
Действенность своей формулы Ричард Готт затем успешно продемонстрировал, предсказав будущую продолжительность бродвейских шоу только исходя из знания о том, сколько времени каждое из них уже шло, а также время распада радиоактивного элемента, если неизвестно, какой это элемент.
Кстати, история открытия Готтом своей формулы также весьма интересна. Будучи студентом, он приехал в Берлин и узнал, что Берлинская стена существует уже 7 лет. Он заключил, что его приезд в Берлин и возраст стены являются взаимослучайными событиями, и, воспользовавшись принципом Коперника, предположил, что скорее всего он находится приблизительно в середине времени существования Берлинской стены. Отсюда он сделал оценку, что с вероятностью в 50 процентов стена падет в период от 2,5 до 21 года от того момента. Примерно через двадцать лет стена пала, и Готта удивила точность его предсказания. Тогда он и решился исследовать тему подробнее. Естественно, он применил свою формулу и к оценке времени будущего существования человечества, в результате чего получил рассуждения, аналогичные тем, с которых мы начали эту главу.
Следует обратить внимание на то, что в формулировке Картера – Лесли Теоремы о конце света вычисляется не сама вероятность человеческого вымирания, а поправка к некой известной вероятности глобальной катастрофы, сделанная с учетом того факта, что мы живем до нее.