KnigaRead.com/
KnigaRead.com » Документальные книги » Биографии и Мемуары » Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Лев Понтрягин, "Жизнеописание Л. С. Понтрягина, математика, составленное им самим" бесплатно, без регистрации.
Перейти на страницу:

28

См., например, Понтрягин Л. С. Обыкновенные дифференциальные уравнения. — М.: Наука, 1982, с. 75–93.

29

Книга А. А. Андронова, А. А. Витта и С. Э. Хайкина «Теория колебаний» была опубликована в 1937 г. (без упоминания об авторстве А. А. Витта), второе издание в 1959 г., третье — в 1981 г.

30

Тогда мы ещё не знали, что грядёт 1937 год. Я описываю события так, как я и мои товарищи воспринимали происходящее тогда — в 1936 году. Позже я понял, что Советскому правительству нужно было разогнать школу русского математика Н. Н. Лузина. Уничтожить его самого они не решились. (Прим. Л. С. Понтрягина.)

31

Точное название статьи «О врагах в советской маске» («Правда», 3.7.1936). За день до этого была опубликована статья «Ответ академику Лузину» («Правда», 2.7.1936); далее — статья «Традиции раболепия» («Правда», 9.7.1936). Публикациями этих статей было положено начало «делу Лузина».

В настоящий момент готовится публикация книги «Дело академика Лузина. Сборник материалов». [«Дело академика Николая Николаевича Лузина» (СПб.: РХГИ, 1999. — 312 с.) — E.G.A.]

32

Воспоминания о «Лузитании» см. в книге «Колмогоров в воспоминаниях» (М.: Физматлит, 1993) и цитированных выше воспоминаниях П. С. Александрова. См. также воспоминания Л. А. Люстерника «Молодость московской математической школы» (УМН, 1967, т. 22, №№ 1, 2, 4 и т. 25 № 4).

33

Отчет об этом заседании был опубликован в журнале «Фронт науки и техники» за 1936 г.

34

См. работу «Гомотопическая классификация отображений (n+2)-мерной сферы в n-мерную. Опубликовано в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988.

35

Книга «Гладкие многообразия и их применения в теории гомотопий» была опубликована в 1955 г. (М.: изд-во АН СССР), второе издание в 1976 г., третье — в 1985 г. Опубликована также в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988.

36

См. работу 1942 г. «О нулях некоторых элементарных трансцендентных функций» и добавление к ней, написанное в 1953 г. Опубликовано в кн.: Понтрягин Л. С. Избранные научные труды. Т. II. — М.: Наука, 1988.

37

См. работу «Эрмитовы операторы в пространстве с индефинитной метрикой». Опубликовано в кн.: Понтрягин Л. С. Избранные научные труды. Т. II. — М.: Наука, 1988.

После этой основополагающей работы теория самосопряжённых операторов в пространстве с индефинитной метрикой получила развитие в работах Крейна, Лангера и др. (см. монографию: Азизов Т. Я., Иохвидов И. С. Основы теории линейных операторов в пространствах с индефинитной метрикой. — М.: Наука, 1986). Эта теория находит самые разнообразные применения в дифференциальных уравнениях, теории колебаний и волноводов, оптимальном управлении и др.

38

Книга «Основы комбинаторной топологии» была издана в 1947 г., второе издание в 1976 г., третье — в 1986 г.; переведена на ряд иностранных языков.

39

Результаты Рохлина по топологии подробно обсуждаются в книге «В поисках утраченной топологии» (М.: Мир, 1989). Там же приведена библиография работ В. А. Рохлина.

40

Основные работы Л. С. Понтрягина о теории дифференциальных уравнений с малым параметром приведены в книге: Понтрягин Л. С. Избранные научные труды. Т. II. — М.: Наука, 1988.

41

О работах Л. С. Понтрягина в области дифференциальных игр см. работу: Никольский С. М. О работе Понтрягина в области линейных дифференциальных игр преследования. — В кн.: Никольский С. М. Первый прямой метод Понтрягина в дифференциальных играх. — М.: МГУ, 1984.

42

Принцип максимума Понтрягина получил широчайшее применение в технике. В качестве примера, приведём здесь справку, выданную ЦАГИ Л. С. Понтрягину.


Применение принципа максимума и теории дифференциальных игр в современной механике полёта

Принцип максимума и теория дифференциальных игр Л. С. Понтрягина нашли широкое и важное применение в следующих работах, проведённых в ЦАГИ.

1. Исследование и выбор оптимальных траекторий, оптимальных параметров и разработка методов оптимизации характеристик летательных аппаратов (ЛА) различного назначения:

⚫ оптимальное пространственное выведение;

⚫ оптимальное выведение на орбиту искусственных спутников Земли, Луны и планет;

⚫ оптимальное маневрирование ЛА, в том числе их стыковка;

⚫ стабилизация и оптимальное управление ориентацией ЛА;

⚫ оптимальные межпланетные перелёты, в том числе с двигателями малой тяги.

2. Решение задач динамики полёта и управления входом в атмосферу:

⚫ исследование возможности полёта ЛА со скоростями входа, превышающими вторую космическую (обеспечение коридора входа, выдерживание ограничений по перегрузке, тепловым и температурным режимам);

⚫ оптимальное выведение на орбиту искусственного спутника планеты (в том числе Марса) с использованием аэродинамического торможения в атмосфере;

⚫ оптимальное управление боковой дальностью

⚫ построение зон достижимости и оптимальное пространственное движение в заданную точку земной поверхности.

3. Исследование оптимальных траекторий и оптимальных режимов полёта самолёта:

⚫ построение оптимальных траекторий и режимов набора высоты, в том числе для рекордных полётов по высоте и скороподъёмности;

⚫ исследование оптимальных пространственных траекторий высокоманёвренных самолётов;

⚫ исследование оптимальных взлётно-посадочных режимов, в том числе с минимизацией шума, создаваемого самолётом на местности.

4. Разработка методов исследования игровых задач механики полёта самолётов:

⚫ игровые задачи преследования–уклонения;

⚫ задачи управления в условиях неполной информации;

⚫ задачи идентификации и наблюдения в механике полёта на основе минимаксных критериев точности.

Кроме того, идеи принципа максимума проникли в ряд нетрадиционных областей управления и стимулировали развитие следующих научно-технических направлений:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*