Яков Перельман - Веселые задачи. Две сотни головоломок
Рис. 181.
Рис. 182.
Рис. 183.
Рис. 184.
Рис. 185.
Фигура на рис. 167 имеет только две «нечетные» точки — те места, где ручка молотка входит в головку: в этих точках сходится по 3 линии. Поэтому фигуру можно начертить непрерывной линией только в том случае, если начать из одной «нечетной» точки и кончить в другой.
То же относится и к фигуре на рис. 169: она содержит только две «нечетные» точки, m и n. Они и будут начальной и конечной точкой при черчении.
Фигура на рис. 172. имеет более двух «нечетных» точек, а потому ее совершенно невозможно начертить одной непрерывной линией.
Десять разных задач
171. Горизонт
Часто приходится читать и слышать, будто одно из убедительных доказательств шарообразности Земли заключается в том, что линия горизонта повсюду имеет форму окружности, а коль скоро это так, отсюда делается вывод, что Земля наша должна быть шаром.
Подумайте, однако, какую форму имела бы линия горизонта, если бы Земля была не шарообразной, а плоской и бесконечно простиралась бы во все стороны?
172. Рост эзопа[16]
«Уверяют, что Эзопова голова была длиной 7 дюймов, а ноги так длинны, как голова и половина туловища; туловище же равно длине ног с головою.
Спрашивается рост сего славного человека».
173. Где и когда?
Вам, вероятно, знаком бессмысленный стишок:
Рано утром, вечерком,
В полдень, на рассвете…
Неведомый слагатель этих стихов стремился выразить ими заведомую нелепость и подбирал слова, которые противоречили бы одно другому.
Между тем приведенная фраза не совсем бессмысленна; на Земле существуют места, где такое определение времени применительно к некоторому реальному моменту вполне верно.
Где и когда это бывает?
174. Пять обрывков цепи
Кузнецу принесли пять цепей, по три звена в каждой (рис. 186), и велели соединить их в одну цепь.
Рис. 186. Обрывки цепи.
Прежде чем приняться за дело, кузнец стал думать о том, сколько колец понадобится для этого раскрыть и вновь заковать. Он решил, что четыре.
Нельзя ли, однако, выполнить ту же работу, раскрыв меньше колец?
175. Четырьмя пятерками
Нужно выразить число 16 с помощью 4 пятерок, соединяя их знаками арифметических действий. Как это сделать?
176. Вишня
Мякоть вишни окружает ее косточку слоем толщиной в косточку. Будем считать, что и вишня, и косточка имеют форму шариков. Сообразите в уме, во сколько раз объем сочной части вишни больше объема косточки?
177. Дыни
Продаются две дыни. Одна — окружность 72 см — стоит 40 рублей. Другая — окружность 60 см — стоит 25 рублей.
Какую дыню выгоднее купить?
178. Удивительная затычка
В доске выпилены три отверстия: одно — квадратное, другое — круглое, третье — в форме креста (рис. 187). Нужно изготовить затычку такой формы, чтобы она годилась для всех этих отверстий.
Рис. 187. Какой затычкой можно заткнуть все эти дыры?
Вам кажется, что такой затычки быть не может: отверстия чересчур разнообразны по форме. Могу вас уверить, что подобная затычка существует. Попытайтесь найти ее.
179. Модель башни Эйфеля
Башня Эйфеля в Париже, высотой 300 м, из железа, которого пошло на нее 8 000 000 кг. У моего знакомого есть точная модель знаменитой башни, весящая всего только один килограмм.
Рис. 188.
Какой она высоты? Выше стакана или ниже?
180. Муха на ленте
Я взял длинную бумажную ленту, с одной стороны красную, с другой — белую, склеил ее концы и получившееся бумажное кольцо положил на стол.
Мое внимание привлекла муха, севшая на красную сторону ленты и начавшая странствовать по ней. Я стал следить за ее путешествием вдоль ленты и, к изумлению, заметил, что, побродив немного по ленте, она очутилась на противоположной, белой стороне, хотя все время оставалась на ленте и ни разу не переползла через ее край. Продолжая следить за мухой, я вскоре увидел, что она снова оказалась на красной стороне ленты, хотя — могу это утверждать — не покидала ленты, не переступала и не перелетала через ее края.
Не объясните ли вы, как могло это случиться?
Решения задач 171—180
171. Даже если бы Земля была совершенно плоской, линия горизонта была бы окружностью!
Действительно, что такое горизонт? Воображаемая линия, по которой небесный свод пересекается с Землей. Но небесный свод имеет форму шаровой поверхности. По какой же другой линии шаровая поверхность может пересекаться с плоскостью, как не по окружности.
Итак, круглая форма горизонта сама по себе еще не доказывает, что Земля кругла!
172. Мы знаем из условия задачи, что длина ног Эзопа равна 7 дюймам (голова) плюс длина половины туловища. Известно еще, что длина туловища равна длине ног плюс 7 дюймов, откуда длина ног равна длине туловища без 7 дюймов. Значит,
1/2 длины туловища + 7 дюймов = длина туловища — 7 дюймов.
Таким образом, туловище длиннее 1/2 туловища на 14 дюймов, откуда 1/2 туловища равна 14 дюймам, а все туловище — 28 дюймам. Прибавив длину головы и ног, т. е. туловища, равного 28 дюймам, получим рост Эзопа: 56 дюймов, или 2 аршина.
173. Где? — За полярным кругом.
Когда? — 21 декабря, около 12 часов дня, когда зимнее солнце лишь на мгновение показывается над горизонтом, чтобы тотчас же скрыться снова.
Действительно, тот момент есть «утро», так как совпадает с восходом солнца, но в то же время и вечер, так как совпадает с заходом солнца. Безусловно, это и полдень — 12 часов дня, и, конечно, рассвет, так как, пока солнце еще не выйдет над горизонтом, длится утренняя заря. Итак, это — «рано утром, вечерком, в полдень, на рассвете».
174. Достаточно разогнуть три кольца одной цепи, и полученными кольцами можно соединить концы остальных четырех.
175. Существует только один способ: 55: 5 + 5 = 16.
176. Толщина слоя мякоти равна поперечнику косточки. Значит, поперечник вишни в 3 раза больше поперечника косточки. Отсюда объем вишни больше объема косточки в
3 × 3 × 3 = 27 раз.
И следовательно, объем мякоти больше объема косточки в
27 — 1 = 26 раз.
177. Окружность большой дыни (72 см) превышает окружность меньшей (60 см) в 24/20, т. е. в 11/5 раза. Таково же и отношение ее поперечника к поперечнику меньшей дыни. Значит, по объему первая дыня больше второй в раз.
Если меньшая дыня стоит 25 рублей, то большая должна стоить 25 × 216: 125 = 216: 5 = 43 руб. 20 коп., между тем ее продают всего за 40 руб. Ясно, что ее купить выгоднее, чем меньшую.
178. Затычка искомой формы изображена на рис. 189. Вы можете заткнуть ею и квадратное, и круглое, и крестообразное отверстие.
Рис. 189.
179. Модель весом 1 кг гораздо выше стакана, потому что, как это ни неожиданно, она имеет высоту 11/2 метра! В самом деле, модель меньше самой башни по объему во столько раз, во сколько 1 кг меньше 8 000 000 кг, т. е. в 8 000 000 раз. Значит, высота модели меньше высоты башни в такое число раз, которое, будучи дважды умножено само на себя, составит 8 000 000. Этому условию удовлетворяет число 200. Разделив высоту Эйфелевой башни, 300 м, на 200, получим 11/2 м. Результат довольно странный. Полутораметровое железное изделие весит всего 1 кг. Это объясняется тем, что Эйфелева башня, при своих больших размерах, сооружение необыкновенно легкое, как говорят, ажурное.
180. Загадка объясняется тем, что один конец ленты, прежде чем приклеить его к другому, один раз повернули. Легко убедиться на опыте, что тогда получается кольцо, ползая по которому, муха может обойти обе его стороны, ни разу не переступая через края.
Рис. 190.
Еще десять задач
181. Кто больше?
Двое человек считали в течение часа всех прохожих, которые проходили мимо них по тротуару. Один из считавших стоял у ворот дома, другой — прохаживался вперед и назад по тротуару.
Кто насчитал больше прохожих?
182. Возраст моего сына
Сейчас мой сын моложе меня втрое. Но пять лет назад он был моложе меня в четыре раза. Сколько ему лет?