Рэймонд Смаллиан - Как же называется эта книга
В этой связи мне вспоминается история, якобы приключившаяся с Лейбницем. Однажды великий философ стал размышлять, не жениться ли ему на некоей даме. Взяв лист бумаги, он разделил его на две части и на одной подробно перечислил все достоинства дамы, а на другой - ее недостатки.
Недостатков оказалось больше, и Лейбниц решил воздержаться от женитьбы.
120.
Эта задача, хотя и проста, но несколько неожиданна.
Предположим, что я либо рыцарь, либо лжец и высказываю два следующих утверждения:
1) Я люблю Линду.
2) Если я люблю Линду, то я люблю Кати.
Кто я: рыцарь или лжец?
121. Новый вариант старинной пословицы.
Старинная английская пословица гласит: "Под приглядом котел не закипит". Как я установил, это утверждение ложно.
Однажды мне довелось приглядывать за котлом, стоявшим на раскаленной плите, и котел закипел.
А что если мы исправим старинную пословицу, например, так:
"Под приглядом котел не закипит, если за ним не приглядывать"?
Как, по-вашему, истинно или ложно такое утверждение?
В. ЕСТЬ ЛИ СОКРОВИЩА НА ЭТОМ ОСТРОВЕ?
Задачи двух предыдущих групп были связаны в основном с условными высказываниями, то есть с высказываниями вида "Если P истинно, то Q. Задачи этой группы связаны главным образом с высказываниями вида "P истинно в том и только в том случае, если Q истинно". Оно означает, что если P истинно, то Q истинно, и если Q истинно, то P истинно.
Иначе говоря, если одно из двух высказываний P, Q истинно, то другое также истинно. Оно означает также, что высказывания P и Q либо оба истинны, либо оба ложны.
Сложное высказывание "P в том и только в том случае, если Q" принято обозначать "P - Q".
Таблица истинности для P - Q имеет следующий вид:
P Q P - Q
И И И И Л Л Л И Л Л Л И
Высказывание "P в том и только в том случае, если Q"
иногда читают как "P эквивалентно Q" или как "P и Q эквивалентны". Отметим два следующих факта:
Факт 1. Любое высказывание, эквивалентное истинному высказыванию, истинно.
Факт 2. Любое высказывание, эквивалентное ложному высказыванию, ложно.
122. Есть ли сокровище на этом острове?
На некотором острове, населенном рыцарями и лжецами, разнесся слух о том, что на нем зарыты сокровища. Вы прибываете на остров и спрашиваете у одного из местных жителей (назовем его A), есть ли золото на его острове. В ответ на ваш вопрос A заявляет: "Сокровища на этом острове есть в том и только в том случае, если я рыцарь".
Наша задача подразделяется на две части:
а) Можно ли определить, кто такой A - рыцарь или лжец?
б) Можно ли определить, есть ли сокровища на острове?
123.
В предыдущей задаче коренной житель A острова рыцарей и лжецов добровольно снабдил вас информацией. Предположим, что теперь вы спросили у A: "Эквивалентно ли высказывание о том, что вы рыцарь, высказыванию о том, что на этом острове спрятаны сокровища?" Если бы A ответил "да", то задача свелась бы к предыдущей. Предположим, что A ответил "нет". Могли бы вы в таком случае сказать, спрятаны ли сокровища на острове?
124. Как я разбогател.
К сожалению, история, которую я хочу вам поведать, не соответствует истине. Но поскольку она интересна, то мне все равно хочется рассказать ее вам.
В океане (в каком именно - не помню) неподалеку друг от друга расположены три острова: A, B и C. Мне удалось разузнать, что по крайней мере на одном из них закопаны сокровища, но на каком именно, осталось невыясненным.
Острова B и C были необитаемы, население острова A составляли рыцари и лжецы. Не исключено, что среди местных жителей встречались и нормальные люди, но сказать с уверенностью, был ли на острове хоть один нормальный человек, я не берусь.
Мне посчастливилось раздобыть карту островов, составленную знаменитым капитаном Марстоном - пиратом, славившимся своими причудами (он-то и запрятал сокровища). К карте была приложена записка, разумеется зашифрованная. Когда я ее расшифровал, то выяснилось, что она состоит лишь из двух предложений. Вот что в ней значилось:
(1) На острове A нет сокровищ.
(2) Если среди жителей острова A встречаются нормальные люди, то сокровища закопаны на двух островах.
Я поспешил на остров A. Мне было достоверно известно, что обитатели этого острова знают о зарытых сокровищах все до мелочей. Король острова догадался, зачем я прибыл в его владения, и в недвусмысленных выражениях разрешил мне задать лишь один вопрос любому из наугад выбранных мною его подданных. Способа установить, на кого пал мой выбор - на рыцаря, лжеца или на нормального человека, у меня не было.
Мне необходимо было придумать такой вопрос, чтобы, получив ответ, я мог указать на один из островов и быть уверенным, что сокровище закопано на нем.
Какой вопрос следовало мне задать островитянину?
125.
Случилось мне как-то раз побывать на другом острове рыцарей, лжецов и нормальных людей. По слухам, на том острове были закопаны несметные сокровища, и я хотел разузнать, как обстоит дело в действительности. Король острова (рыцарь) любезно представил меня трем своим подданным A, B и C и сообщил мне, что не более чем один из них нормальный человек. Любому из них разрешалось задать два вопроса, на которые можно ответить "да" или "нет".
Можно ли при помощи двух таких вопросов выяснить, запрятаны ли на острове сокровища?
126. Умеете ли вы рассуждать логически?
Предположим, что население двух соседних островов составляют только рыцари и лжецы (на островах нет ни одного нормального человека). Вам говорят, что на одном острове проживает четное, а на другом - нечетное число рыцарей.
Вам также сообщают, что на острове с четным числом рыцарей закопаны сокровища, а на острове с нечетным числом рыцарей сокровищ нет.
Вы выбираете наугад один из островов и отправляетесь туда.
Все обитатели острова знают, сколько рыцарей и сколько лжецов живет среди них. Вы беседуете с тремя обитателями A, B и C острова и получаете от них следующие заявления:
A: Число лжецов на этом острове четно.
B: На нашем острове сейчас находится нечетное число людей.
C: Я рыцарь в том и только в том случае, если A и B однотипны.
Предположим, что вы не рыцарь и не лжец и что, когда вы были на острове, других гостей на нем не было. Спрятаны ли на острове сокровища?
РЕШЕНИЯ
109--112. Эти четыре задачи основаны на использовании одной и той же идеи, которая сводится к следующему. Пусть P - любое высказывание, а A - любой обитатель острова рыцарей и лжецов. Тогда если A высказывает утверждение: "Если я рыцарь, то P", то он должен быть рыцарем, а высказывание P должно быть истинным! B это трудно поверить, и мы докажем наше удивительное утверждение двумя способами.
1. Предположим, что A - рыцарь. Тогда высказывание "Если A рыцарь, то P" должно быть истинным (так как рыцари всегда говорят правду). Следовательно, A - рыцарь, и верно, что если A - рыцарь, то P. Из этих двух фактов мы заключаем, что P должно быть истинно. Таким образом, приняв в качестве посылок предположение о том, что A - рыцарь, мы получаем в качестве заключения высказывание P. Тем самым (с учетом факта 4 об импликации) мы доказали, что если A - рыцарь, то P. Но именно это и утверждал A!
Следовательно, A должен быть рыцарем. А так как мы доказали, что если A - -- рыцарь, то P, то заключаем, что P должно быть истинно.
2. Другой способ убедиться в истинности нашего утверждения состоит в следующем. Напомним, что из ложного высказывания следует любое высказывание. Поэтому если A не рыцарь, то высказывание "Если A рыцарь, то P" автоматически становится истинным и, следовательно, не могло бы принадлежать лжецу. Значит, если кто-нибудь, о ком известно, что он может быть либо рыцарем, либо лжецом, высказывает такое утверждение, то он может быть только рыцарем и высказывание P должно быть истинным.
Применим этот принцип к нашим задачам. Начнем с задачи 109.
Если в качестве P принято высказывание "В - рыцарь", то ясно, что A должен быть рыцарем, а его высказывание истинным. Следовательно, B рыцарь, и мы получаем ответ:
A и B - оба рыцари.
В задаче 110 в качестве P выберем высказывание "А придется съесть свою шляпу". Мы видим, что A должен быть рыцарем и что ему придется съесть свою шляпу. (Тем самым доказано, что хотя рыцари обладают несомненными достоинствами и добродетелями, они тем не менее могут быть глуповатыми.)
Ответ к задаче 111: A - рыцарь.
Правильное заключение, к которому можно прийти в задаче 112: автор опять мистифицирует читателей! Условия задачи противоречивы: высказывание "Если я рыцарь, то дважды два - пять" не может принадлежать ни рыцарю, ни лжецу.
113. A должен быть рыцарем, а B - лжецом.
Докажем прежде всего, что только рыцарь может высказать утверждение вида "Если P, то я лжец". Напомним, что истинное высказывание следует из любого высказывания.
Значит, если высказывание "Я лжец" истинно, то полное высказывание "Если P, то я лжец". также истинно. Но если я лжец, то никакое истинное высказывание не могло бы принадлежать мне. Следовательно, высказывая утверждение "Если P, то я лжец", я должен быть рыцарем.