KnigaRead.com/
KnigaRead.com » Справочная литература » Справочники » Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ангелина Яковлева, "Ответы на экзаменационные билеты по эконометрике" бесплатно, без регистрации.
Перейти на страницу:

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают со значением t-критерия, которое определяется по таблице распределения Стьюдента и называется критическим.

При проверке значимости частного коэффициента корреляции критическое значение t-критерия определяется как tкрит( ;n–l–1), где а – уровень значимости, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров, (n–l–1) – число степеней свободы, которое определяется по таблице распределений t-критерия Стьюдента.

При проверке основной гипотезы вида Н0:r(yxi/x1…xn-1)=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:

При проверке основной гипотезы возможны следующие ситуации.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то с вероятностью а основная гипотеза о незначимости частного коэффициента корреляции отвергается, и между переменными xi и y существует корреляционная связь при постоянных значениях остальных переменных, включённых в модель регрессии.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит, то основная гипотеза о незначимости частного коэффициента корреляции принимается, и между переменными xi и y отсутствует корреляционная связь при постоянных значениях остальных переменных, включённых в модель регрессии. Следовательно, включение независимой переменной xi в данную модель регрессии является необоснованным.

Рассмотрим процесс проверки значимости коэффициента множественной корреляции.

Основная гипотеза состоит в предположении о незначимости коэффициента множественной корреляции, т. е.

Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициента множественной корреляции, т. е.

Н1:R(y,xi)≠0.

Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора через коэффициент множественной детерминации.

Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.

При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=l–1 и k2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.

При проверке основной гипотезы вида Н0:R(y,xi)=0 наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:

где R2(y,xi) – коэффициент множественный детерминации.

При проверке основной гипотезы возможны следующие ситуации.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то с вероятностью а основная гипотеза о незначимости коэффициента множественной корреляции отвергается, и он признаётся значимым. В этой ситуации включение в модель регрессии всех исследуемых переменных считается обоснованным.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл≤Fкрит, то основная гипотеза о незначимости коэффициента множественной корреляции принимается, и он признаётся незначимым. В этой ситуации построение модели регрессии на основе исследуемых переменных считается необоснованным.

35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом

Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.

Основная гипотеза состоит в предположении о незначимости коэффициентов модели множественной регрессии, т. е.

Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициентов модели множественной регрессии, т. е.

Данные гипотезы проверяются с помощью t-критерия Стьюдента, который вычисляется посредством частного F-критерия Фишера-Снедекора.

При проверке основной гипотезы о значимости коэффициентов модели множественной регрессии применяется зависимость, которая существует между t-критерием Стьюдента и частным F-критерием Фишера-Снедекора:

При проверке значимости коэффициентов модели множественной регрессии критическое значение t-критерия определяется как tкрит(а;n-l-1), где а – уровень значимости, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров, (n-l-1) – число степеней свободы, которое определяется по таблице распределений t-критерия Стьюдента.

При проверке основной гипотезы вида

наблюдаемое значение частного F-критерия Фишера-Снедекора рассчитывается по формуле:

При проверке основной гипотезы возможны следующие ситуации.

Если наблюдаемое значение t-критерия больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.

tнабл≥tкрит, то основная гипотеза о незначимости коэффициента βk модели множественной регрессии отвергается, и он является значимым.

Если наблюдаемое значение t-критерия меньше критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е. tнабл<tкрит, то основная гипотеза о незначимости коэффициента βk модели множественной регрессии принимается.

Проверка основной гипотезы о значимости модели множественной регрессии в целом состоит в проверке гипотезы о значимости коэффициента множественной корреляции или значимости параметров модели регрессии.

Если проверка значимости модели множественной регрессии в целом осуществляется через проверку гипотезы о значимости коэффициента множественно корреляции, то выдвигается основная гипотеза вида Н0:R(y,xi)=0, утверждающая, что коэффициент множественной корреляции является незначимым, и, следовательно, модель множественной регрессии в целом также является незначимой.

Обратная или конкурирующая гипотеза вида Н1:R(y,xi)≠0 утверждает, что коэффициент множественной корреляции является значимым, и, следовательно, модель множественной регрессии в целом также является значимой.

Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.

Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.

При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=l–1 и k2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.

При проверке основной гипотезы вида Н0:R(y,xi наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:

где R2(y,xi) – коэффициент множественный детерминации.

При проверке основной гипотезы возможны следующие ситуации.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то с вероятностью а основная гипотеза о незначимости коэффициента множественной корреляции отвергается, и он признаётся значимым. Следовательно, модель множественной регрессии в целом также является значимой.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл≤Fкрит, то основная гипотеза о незначимости коэффициента множественной корреляции принимается, и он признаётся незначимым. В этом случае модель множественной регрессии признаётся незначимой.

36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*