KnigaRead.com/

Евгений Банников - Сварка

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Банников, "Сварка" бесплатно, без регистрации.
Перейти на страницу:

Машинная резка дает более чистые кромки и меньшую ширину разреза, чем ручная резка. Чем больше толщина металла, тем больше ширина разреза. Процесс резки вызывает изменение структуры, химического состава и механических свойств металла.

При резке низкоуглеродистой стали тепловое влияние процесса на ее структуру незначительно. Наряду с участками перлита появляется неравновесная составляющая сорбита, что даже несколько улучшает механические качества металла. Механические свойства низкоуглеродистой стали при резке почти не изменяются.

В процессе резки стали, имеющей повышенное содержание углерода и легирующие примеси, кроме сорбита образуются троостит и даже мартенсит. При этом сильно повышаются твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образование холодных трещин.

Изменение химического состава стали проявляется в образовании обезуглероженного слоя металла непосредственно на поверхности резания. Это происходит в результате выгорания углерода под воздействием струи режущего кислорода. Несколько глубже находится участок с большим содержанием углерода, чем у исходного металла. Затем, по мере удаления от разреза, содержание углерода уменьшается до исходного. Также происходит выгорание легирующих элементов стали. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становятся более твердыми и дают трещины в зоне резания.

Нержавеющие хромистые и хромоникелевые стали, чугун, цветные металлы и их сплавы не поддаются обычной кислородной резке, так как не удовлетворяют указанным выше условиям. Для этих металлов применяют кислородно-флюсовую резку, сущность которой заключается в следующем. В зону резания с помощью специальной аппаратуры непрерывно подается порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повышается температура места разреза. Кроме того, продукты сгорания флюса реагируют с тугоплавкими оксидами и дают жидкотекучие шлаки, легко вытекающие из места разреза. В качестве флюса используется мелкогранулированный железный порошок марки ПЖ–5М.

При резке хромистых и хромоникелевых сталей во флюс добавляют 25–50 % окалины; при резке чугуна добавляют около 35 % доменного феррофосфора; при резке меди и ее сплавов применяют флюс, состоящий из смеси железного и алюминиевого порошка (15–20 %) с феррофосфором (10–15 %).

Резку производят установкой типа УРХС–5, состоящей из флюсопитателя и резака. Установка используется для ручной и машинной кислородно-флюсовой резки высоколегированных хромистых и хромоникелевых марок сталей толщиной до 200 мм при скорости резания 230–760 мм/мин. На 1 м разреза расходуется кислорода 0,20–2,75 м3, ацетилена – 0,017–0,130 м3 и флюса – 0,2–1,3 кг.

При кислородно-флюсовой резке некоторая часть теплоты подогревающего пламени уходит на нагревание флюса. Поэтому мощность пламени берется на 15–25 % выше, чем при обычной резке. Пламя должно быть нормальным или с некоторым избытком ацетилена. Расстояние от торца мундштука резака до поверхности разрезаемого металла устанавливается в пределах 15–20 мм. При малом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и обратные удары. Кроме того, наблюдается перегрев мундштука, приводящий к нарушению процесса резки. Угол наклона мундштука резака должен быть в пределах 0–10° в сторону, обратную направлению резки. Хорошие результаты дает предварительный подогрев.

Хромистые и хромоникелевые стали требуют подогрева до 300–400 °C, а сплавы меди – до 200–350 °C. Скорость резки зависит от свойств металла и его толщины. Чугун толщиной 50 мм режут со скоростью 70–100 мм/мин. При этом на 1 м разреза расходуется 2–4 м3 кислорода, 0,16–0,25 м3 ацетилена и 3,5–6 кг флюса.

Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромоникелевых сталей расход всех материалов снижается почти в 3 раза.

Резку кислородным копьем (рис. 81) выполняют тонкостенной стальной трубкой с наружным диаметром 20–35 мм. Трубку присоединяют к рукоятке с вентилем для кислорода и по ней подают кислород к месту реза. До начала резки конец трубки нагревают газовой горелкой или электрической дугой до температуры воспламенения. Кислородное копье горящим концом с усилием прижимают к изделию (металл, бетон, железобетон) и прожигают отверстие. Образуемые шлаки давлением кислорода выносятся наружу, в зазор между копьем и стенкой прожигаемого отверстия.


Рис. 81.

Схема прожигания отверстия в бетоне кислородным копьем:

1 – держатель копья; 2 – копье; 3 – защитный экран; 4 – бетон

Глава 12

Технология проведения сварки под флюсом и оборудование для нее

Сущность сварки под флюсом

Сваркой под флюсом называется дуговая сварка, при которой дуга горит под слоем сварочного флюса, обеспечивающего защиту сварочной ванны от контакта с воздухом.

Особенностью процесса дуговой сварки под флюсом является применение непокрытой сварочной проволоки и гранулированного (зернистого) флюса. Сварку ведут закрытой дугой, горящей под слоем флюса в пространстве газового пузыря, образующегося в результате выделения паров и газов в зоне дуги. Сверху сварочная зона ограничена пленкой расплавленного шлака, снизу – сварочной ванной. Среда в сварочной зоне является наиболее благоприятной с точки зрения защиты металла от взаимодействия с воздухом. По мере сварки давление газов и паров в пузыре возрастает. Наступает момент, когда пленка расплавленного шлака прорывается и избыток газов удаляется в окружающую атмосферу. Такой процесс удаления газов периодически повторяется.

Сварка под флюсом является одним из основных способов выполнения сварочных работ в промышленности и строительстве. Она существенно изменила технологию изготовления сварных изделий. По степени механизации процесса различают автоматическую и механизированную сварку под флюсом. Для получения качественных сварных швов взамен электродных покрытий применяют гранулированное вещество, называемое флюсом.


Автоматическая сварка под флюсом производится при помощи автоматической установки (сварочная головка или сварочный трактор). Эта установка подает электродную проволоку и флюс в зону сварки, перемещает дугу вдоль свариваемого шва и поддерживает ее горение.

Принципиальная схема автоматической сварки под флюсом выглядит следующим образом (рис. 82):

• электродная проволока подается в зону сварки;

• кромки свариваемого изделия в зоне сварки покрываются слоем флюса, подаваемого из бункера;

• толщина слоя флюса составляет 30–50 мм;

• сварочный ток подводится от источника тока к электроду через токоподводящий мундштук, находящийся на небольшом расстоянии от конца электродной проволоки, благодаря чему при автоматической сварке можно применять большие сварочные токи;

• дуга возбуждается между свариваемым изделием и электродной проволокой.


Рис. 82. Плавильное пространство при сварке под флюсом:

1 – основной металл; 2 – электродная проволока; 3 – передняя часть сварочной ванны; 4 – хвостовая часть сварочной ванны (жидкий металл); 5 – флюс; 6 – закристаллизировавшийся сварочный шов; 7 – границы кристалилизационных слоев; h – вылет электрода


При горении дуги образуется ванна расплавленного металла, закрытая сверху расплавленным шлаком и оставшимся нерасплавленным флюсом. Нерасплавившийся флюс отсасывается шлангом обратно в бункер. Пары и газы, образующиеся в зоне дуги, создают вокруг нее замкнутую газовую полость. Некоторое избыточное давление, возникающее при термическом расширении газов, оттесняет жидкий металл в сторону, противоположную направлению сварки.

У основания дуги (в кратере) сохраняется лишь тонкий слой металла. В таких условиях обеспечивается глубокий провар основного металла. Так как дуга горит в газовой полости, закрытой расплавленным шлаком, то значительно уменьшаются потери теплоты и металла на угар и разбрызгивание. По мере перемещения дуги вдоль разделки шва наплавленный металл остывает и образует сварной шов. Жидкий шлак, имея более низкую температуру плавления, чем металл, затвердевает несколько позже, замедляя охлаждение металла шва.

Продолжительное пребывание металла шва в расплавленном состоянии и медленное остывание способствуют выходу на поверхность всех неметаллических включений и газов, получению чистого, плотного и однородного по химическому составу металла шва.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*