KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ)

БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (ФЕ)" бесплатно, без регистрации.
Перейти на страницу:

  Теория кривых намагничивания и петель гистерезиса важна для разработки новых и улучшения существующих магнитных материалов .

  Связь Ф. с многими немагнитными свойствами вещества позволяет по данным измерений магнитных свойств получить информацию о различных тонких специфических особенностях электронной структуры кристаллов. Поэтому Ф. интенсивно исследуют на электронном и ядерном уровнях, применяя электронный ферромагнитный резонанс , ядерный магнитный резонанс , Мёссбауэра эффект , рассеяние на ферромагнитных кристаллах различного типа корпускулярных излучений (с учётом влияния магнитных моментов взаимодействующих частиц) и т.д. В 70-е гг. 20 в. возникли интересные контакты Ф. с физикой элементарных частиц и астрофизикой. Здесь следует упомянуть об изучении в ферромагнетиках явлений аннигиляции позитронов, образования мюония и позитрония (см. Позитрон ), рассеяния мюонов, а в астрофизике – о проблеме магнетизма нейтронных звёзд (пульсаров ).

  Лит.: Акулов Н. С., Ферромагнетизм, М. – Л., 1939; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Вонсовский С. В., Шур Я. С., Ферромагнетизм, М. – Л., 1948; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Туров Е. А., Физические свойства магнитоупорядоченных кристаллов, М., 1963; Теория ферромагнетизма металлов и сплавов. Сб., пер. с англ., М., 1963; Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В., Спиновые волны, М., 1967: Туров Е. А., Петров М. П., Ядерный магнитный резонанс в ферро- и антиферромагнетиках, М., 1969; Сверхтонкие взаимодействия в твердых телах, пер. с англ., М., 1970; Вонсовский С. В., Магнетизм. М., 1971; Becker R., Doring W., Ferromagnetismus, B., 1939; Kneller E., Ferromagnetismus, B., 1962; Magnetism, v. 1–4, N. Y. – L., 1963–66; Amorphous magnetism, L. – N. Y., 1973; Goodenough J. B., Magnetism and the Chemical Bond, N. Y. – L., 1963.

  С. В. Вонсовский.

Рис. 2. Кривая безгистерезисного намагничивания (0 Вm ) и петля гистерезиса поликристаллического железа. Значению индукции Вm соответствует намагниченность насыщения Js .

Рис. 1. Ферромагнитная (коллинеарная) атомная стуктура гранецентрированной кубической решётки ниже точки Кюри Q; стрелками обозначены направления атомных магнитных моментов; Js — вектор суммарной намагниченности.

Рис. 3. Зависимость намагниченности J от напряжённости магнитного поля Н для трёх главных кристаллографических осей монокристалла железа (тип решётки — объёмно-центрированная кубическая, [100] — ось лёгкого намагничивания).

Рис. 4. Схематическое изображение температурной зависимости намагниченности насыщения Js ферромагнетика, Q — точка Кюри.

Ферромагнетизм слабый

Ферромагнети'зм сла'бый, см. Слабый ферромагнетизм .

Ферромагнетики

Ферромагне'тики, вещества (как правило, в твёрдом кристаллическом состоянии), в которых ниже определённой температуры (Кюри точки Q) устанавливается ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах, см. Ферромагнетизм ). Среди химических элементов ферромагнитны переходные элементы Fe, Со и Ni (3 d -металлы) и редкоземельные металлы Gd, Tb, Dy, Но, Er (табл. 1).

  Табл. 1. — Ферромагнитные металлы

Металлы Q, К Js0 , гс* Fe 1043 1735,2 Co 1403 1445 Ni 631 508,8 Gd 289 1980 Tb 223 2713 Dy 87 1991,8 Ho 20 3054,6 Er 19,6 1872,6

* Js0 – намагниченность единицы объёма при абсолютном нуле температуры.

  Для 3d -металлов и Gd характерна коллинеарная ферромагнитная атомная структура, а в остальных редкоземельных Ф. – неколлинеарная (спиральная и др.; см. Магнитная структура ). Ферромагнитны также многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с др. неферромагнитными элементами, сплавы и соединения Cr и Mn с неферромагнитными элементами (т. н. Гейслеровы сплавы), соединения ZrZn2 и Zrx M1-x Zn2 (где М – это Ti, Y, Nb или Hf, 0 £ x £ 1), Au4 V, Sc3 In и др. (табл. 2), а также некоторые соединения металлов группы актинидов (например, UH3 ).

  Табл. 2. — Ферромагнитные соединения

Соединения Q, К Соединения Q, К Fe3 AI 743 TbN 43 Ni3 Mn 773 DyN 26 FePd3 705 EuO 77 MnPt3 350 MnB 578 CrPt3 580 ZrZn2 35 ZnCMn3 353 Au4 V 42–43 AlCMn3 275 Sc3 ln 5–6

  Особую группу Ф. образуют сильно разбавленные растворы замещения парамагнитных атомов, например Fe или Со в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стеклах, халькогенидах (сульфидах, селенидах, теллуридах) и т.п. Число известных неметаллических Ф. пока невелико. Это, например, ионные соединения типа La1-x Cax MnO5 (0,4 > x > 0,2), EuO, Eu2 SiO4 , EuS, EuSe, EuI2 , CrB3 и т.п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q ~ 100 К.

  Лит. см. при ст. Ферромагнетизм .

  С. В. Вонсовский.

Ферромагнин

Ферромагни'н, то же, что магнон .

Ферромагнитная плёнка

Ферромагни'тная плёнка, см. Магнитная тонкая плёнка .

Ферромагнитный резонанс

Ферромагни'тный резона'нс, одна из разновидностей электронного магнитного резонанса; проявляется в избирательном поглощении ферромагнетиком энергии электромагнитного поля при частотах, совпадающих с собственными частотами w0 прецессии магнитных моментов электронной системы ферромагнитного образца во внутреннем эффективном магнитном поле Н эф. Ф. р. в более узком смысле – возбуждение колебаний типа однородной (во всём объёме образца) прецессии вектора намагниченности J (спиновых волн с волновым вектором k = 0), вызываемое магнитным СВЧ-полем H ^ , перпендикулярным постоянному намагничивающему полю H 0 . Однородный Ф. р., как и электронный парамагнитный резонанс (ЭПР), может быть обнаружен методами магнитной радиоспектроскопии . Поскольку магнитная СВЧ-восприимчивость (а следовательно, и поглощение) пропорциональна статической магнитной восприимчивости c0 = J s /H 0 , где J s – намагниченность насыщения ферромагнетика, то при Ф. р. поглощение на несколько порядков больше, чем при ЭПР. Благодаря спонтанной намагниченности ферромагнетика поле Н эф может существенно отличаться от внешнего поля H 0 (из-за магнитной анизотропии и размагничивающих эффектов поверхности образца; см. Размагничивающий фактор ), обычно Н эф (0 даже при H 0 = 0 («естественный» Ф. р.). Основные характеристики Ф. р. – резонансные частоты, релаксация, форма и ширина линий поглощения, нелинейные эффекты – определяются коллективной многоэлектронной природой ферромагнетизма . Квантовомеханическая теория Ф. р. приводит к тому же выражению для частоты Ф. р. w0 , как и классическому рассмотрение w0 = gНэф , где g = g mБ / – магнитомеханическое отношение , g – фактор спектроскопического расщепления (Ланде множитель ), mБ – магнетон Бора,   = h/ 2p – Планка постоянная . Через Н эф частота w0 зависит от формы образца, от ориентации H 0 относительно осей симметрии кристалла и от температуры. Наличие доменной структуры в ферромагнетике усложняет Ф. р., приводя к возможности появления нескольких резонансных пиков.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*