KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ)

БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (ФЕ)" бесплатно, без регистрации.
Перейти на страницу:

  Лит.: Крайзмер Л. П., Быстродействующие ферромагнитные запоминающие устройства, М. – Л., 1964; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974; Китович В. В., Магнитные и магнитооптические оперативные запоминающие устройства, 2 изд., М., 1975; Шигин А. Г., Дерюгин А. А., Цифровые вычислительные машины. Память ЦВМ, М., 1975.

  А. В. Гусев.

Запоминающий элемент на ферритовом сердечнике (а) и петля магнитного гистерезиса (б); ФС — ферритовый сердечник; I — ток записи (считывания); В — магнитная индукция; Вr — остаточная магнитнпая индукция; Н — напряженность магнитного поля; Нm — напряженность перемагничивающего поля; Нc — коэрцитивная сила.

Ферритовый сердечник

Ферри'товый серде'чник, магнитопровод из феррита . Благодаря очень малой удельной электропроводности ферритов в материале Ф. с. при перемагничивании практически не возникают вихревые токи и, следовательно, отсутствуют потери энергии, что обусловливает возможность использования Ф. с. в радиоэлектронной аппаратуре, работающей в диапазоне радиочастот. Основные области применения Ф. с. – радиотехника, автоматика, телемеханика и вычислительная техника. Технология производства Ф. с. основана на методах порошковой металлургии . Из смеси порошков исходных веществ прессуют сердечники нужной формы. Спекание производят при температуре 850–1500 °С в воздушной среде с последующим медленным (в течение нескольких ч ) охлаждением. Магнитные и диэлектрические свойства Ф. с. зависят от состава смеси, процентного содержания исходных компонентов в ней и режима термической обработки, меняя которые можно получать Ф. с. с заданными свойствами, например с высокой начальной магнитной проницаемостью (для использования в высокочастотных и импульсных трансформаторах ), или с прямоугольной петлей магнитного гистерезиса (для использования в запоминающих устройствах ).

  Методы порошковой металлургии позволяют изготовлять Ф. с. разных форм (П- и Ш-образные; кольцевые, или броневые; сложной конфигурации, с несколькими отверстиями в одной или разных плоскостях и др.) и различных размеров (от нескольких см до десятых долей мм ). Наиболее распространены кольцевые Ф. с. с прямоугольной петлей гистерезиса, у которых после намагничивания и снятия намагничивающего поля сколь угодно долго сохраняется одно из двух возможных устойчивых магнитных состояний, соответствующих двум значениям остаточной магнитной индукции (+ Br и – Br ). Это свойство Ф с. обусловило их преимущественное использование как элементов памяти в запоминающих устройствах и логических элементах (например, в ферритдиодных ячейках , ферриттранзисторных ячейках ). Перемагничивание Ф. с. (его перевод из одного магнитного состояния в другое) производится магнитным полем тока, пропускаемого по обмоткам Ф. с. Время перемагничивания зависит от амплитуды и фронта импульса тока, коэрцитивной силы, прямоугольности петли гистерезиса и от геометрических размеров сердечника; оно лежит в пределах от десятых долей мксек до нескольких мксек. Кольцевые Ф. с. с непрямоугольной петлей гистерезиса применяют главным образом в импульсных трансформаторах и ВЧ дросселях.

  Лит.: Пирогов А. И., Шамаев Ю. М., Магнитные сердечники для устройств автоматики и вычислительной техники, 3 изд., М., 1973; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974.

  А. В. Гусев.

Ферриттранзисторная ячейка

Ферриттранзи'сторная яче'йка, импульсный элемент устройств автоматики и вычислительной техники, выполненный на одном или нескольких кольцевых ферритовых сердечниках с прямоугольной петлей гистерезиса и транзисторе . Простейшая Ф. я. (рис. ) содержит один ферритовый сердечник. На сердечник намотаны: одна или несколько обмоток записи, на которые поступают входные электрические импульсы; одна или несколько обмоток считывания, на которые подаются импульсы опроса; выходная обмотка, на которой при перемагничивании сердечника появляется считанный сигнал. Транзистор усиливает сигнал и обеспечивает разделение цепей, что устраняет возможность нежелательного прохождения сигналов в обратном направлении при последовательном соединении нескольких Ф. я. В статическом состоянии транзистор заперт напряжением смещения. При записи сигнал, возникающий на выходной обмотке, ещё больше запирает транзистор. При считывании сигнал на выходной обмотке компенсирует действие напряжения смещения, транзистор отпирается и усиливает считанный сигнал. Ф. я. конструктивно выполняют в отдельном корпусе как самостоятельный модуль.

  Ф. я. лишены ряда недостатков, присущих ферритдиодным ячейкам , они просты, надёжны, имеют хорошие эксплуатационные характеристики, но обладают сравнительно малым быстродействием (~105 переключений в сек ). На базе Ф. я. в 60-х гг. 20 в. разработаны логические элементы для специализированных ЦВМ; Ф. я. получили применение также в устройствах автоматики (делители частоты, сдвигающие регистры и т.п.) и телемеханики. Однако технологическая сложность изготовления Ф. я. ограничила масштабы их производства; с появлением интегральных микросхем Ф. я. стали применяться редко.

  Лит.: Ионов И. П., Магнитные элементы дискретного действия, М., 1968; Тутевич В. Н., Телемеханика, М,, 1973; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974.

  А. В. Гусев.

Схема простейшей ферриттранзисторной ячейки: ФС — ферритовый сердечник; Т — транзистор; wз — обмотка записи; wс — обмотка считывания; wб — выходная обмотка; Есм — напряжение смещения; Еп — напряжение питания; Rк — сопротивление в цепи коллектора; Rн — нагрузка.

Ферриты

Ферри'ты, химические соединения окиси железа Fe2 O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.

  В состав Ф. входят анионы кислорода O2- , образующие остов их кристаллической решётки; в промежутках между ионами кислорода располагаются катионы Fe3+ , имеющие меньший радиус, чем анионы O2- , и катионы Mek+ металлов, которые могут иметь радиусы различной величины и разные валентности k. Существующее между катионами и анионами кулоновское (электростатическое) взаимодействие приводит к формированию определённой кристаллической решётки и к определённому расположению в ней катионов. В результате упорядоченного расположения катионов Fe3+ и Mek+ Ф. обладают ферримагнетизмом и для них характерны достаточно высокие значения намагниченности и точек Кюри. Различают Ф.-шпинели, Ф.-гранаты, ортоферриты и гекса ферриты.

  Ферриты-шпинел и имеют структуру минерала шпинели с общей формулой MeFe2 O4 , где Me – Ni2+ , Co2+ , Fe2+ , Mn2+ , Mg2+ , Li1+ , Cu2+ . Элементарная ячейка Ф.-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2 O3 и состоящий из 32 анионов O2- , между которыми имеется 64 тетраэдрических (А ) и 32 октаэдрических (В ) промежутков, частично заселённых катионами Fe3+ и Me2+ (рис. 1 ). В зависимости от того, какие ионы и в каком порядке занимают промежутки А и В, различают прямые шпинели (немагнитные) и обращенные шпинели (ферримагнитные). В обращенных шпинелях половина ионов Fe3+ находится в тетраэдрических промежутках, а в октаэдрических промежутках – 2-я половина ионов Fe3+ и ионы Me2+ . При этом намагниченность MA октаэдрической подрешётки больше тетраэдрической MB , что приводит к возникновению ферримагнетизма.

  Ферриты-гранаты редкоземельных элементов R3+ (Gd3+ , Tb3+ , Dy3+ , Ho3+ , Er3+ , Sm3+ , Eu3+ ) и иттрия Y3+ имеют кубическую структуру граната с общей формулой R3 Fe5 O12 . Элементарная ячейка Ф.-гранатов содержит 8 молекул R3 Fe5 O12 ; в неё входит 96 ионов O2- , 24 иона R3+ и 40 ионов Fe3+ . В Ф.-гранатах имеется три типа промежутков, в которых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d ), меньшая часть ионов Fe3+ – октаэдрические (я) и ионы R3+ додекаэдрические места (с). Соотношение величин и направлений намагниченностей катионов, занимающих промежутки d, а, с, показано на рис. 2.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*