KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (ЯД)

БСЭ БСЭ - Большая Советская Энциклопедия (ЯД)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (ЯД)" бесплатно, без регистрации.
Перейти на страницу:

  Урановое Я. т. для ядерных реакторов на тепловых нейтронах, составляющих основу ядерной энергетики , имеет обычно повышенное содержание изотопа 235 U (2—4% по массе вместо 0,71% в естественном уране ). Существенный недостаток реакторов на тепловых нейтронах — низкий коэффициент использования природного урана. Несравнимо более высокий коэффициент использования урана может быть достигнут в реакторах-размножителях на быстрых нейтронах. В них используется уран с более высоким содержанием урана 235 U (до 30%), а в будущем, по мере накопления запасов 239 Pu, будет использоваться смешанное уран-плутониевое Я. т. с 15—20% Pu. В этом случае вместо обогащенного урана может быть использован природный и даже уран, обеднённый 235 U, которого накопилось в мире уже достаточно большое количество. Обеднённый уран (без Pu) используется также в экранной зоне реактора-размножителя (зоне воспроизводства), по весу превышающей в несколько раз активную зону. В реакторах на быстрых нейтронах, работающих на уран-плутониевом Я. т., количество накапливающегося 239 Ри может существенно превышать количество сгораемого, т. е. имеет место воспроизводство Я. т. Коэффициент воспроизводства зависит от состава Я. т. По степени его возрастания Я. т. располагается в следующем порядке: окисное (U, Ри) О2 , карбидное (V , Pu) C, нитридное (U, Pu) N и металлическое в виде различных сплавов.

  Производство уранового Я. т. (топливный цикл, см. рис. ) начинается с переработки руд с целью извлечения из них урана. При предварительной сортировке руды по g-излучению в отвал удаляют 20—30% породы с содержанием урана £ 0,01% (применяются и обычные методы обогащения). Гидрометаллургическая переработка руды состоит в её дроблении, кислотном выщелачивании, сорбционном или экстракционном извлечении U из осветлённых растворов или пульп и получении очищенной закиси-окиси урана U3 O8 . Для руд, бедных ураном и лёгких для выщелачивания (особенно в трудных для горных работ условиях), применяют подземное выщелачивание а самом месторождении (для пластовых месторождений — через систему скважин, для жильных — в подземных камерах с предварительной отбойкой и дроблением руды взрывными методами).

  Далее U3 O8 переводят или в тетрафторид UF4 для последующего получения металлического урана или в гексафторид UF6 — единственное устойчивое газообразное соединение урана, используемое для обогащения урана изотопом 235 U. Обогащение осуществляется методом газовой термодиффузии или центрифугированием (см. Изотопов разделение ). Далее UF6 переводят в двуокись урана, которая используется для изготовления сердечников ТВЭЛов или для получения других соединений урана с той же целью.

  К сердечникам ТВЭЛов предъявляются высокие требования в отношении стехиометрического состава и содержания посторонних примесей. Так, в сердечниках 113 UO2 соотношение (по массе) кислорода и металла должно быть в пределах 2,00—2,02; допустимое содержание F и H2 O (по массе) соответственно не более 0,01—0,006% и 0,001%.

  Торий как сырьевой материал для получения делящихся ядер 235 U не нашёл широкого применения по ряду причин: 1) разведанные запасы U в состояния обеспечить ядерную энергетику Я. т. на многие десятилетия; 2) Th не образует богатых месторождений, и технология его извлечения из руд сложнее; 3) наряду с 235 U образуется 232 U, который, распадаясь, образует g-активные ядра (212 Bi, 208 Te), затрудняющие обращение с таким Я. т. и усложняющие производство ТВЭЛов:

 4) переработка облученных ториевых ТВЭЛов с целью извлечения из них 233 U является более трудной и дорогостоящей операцией по сравнению с переработкой урановых ТВЭЛов.

  В процессе эксплуатации ТВЭЛов Я. т. выгорает далеко не полностью, в реакторах-размножителях имеет место воспроизводство Я. т. (Pu). Поэтому отработанные ТВЭЛы направляют на переработку с целью регенерации Я. т. для повторного его использования; U и Pu очищают от продуктов деления. Затем Pu в виде PuO2 направляют для изготовления сердечников, а U, в зависимости от его изотопного состава, или также направляют для изготовления сердечников, или переводят в UF6 с целью обогащения 235 U.

  Регенерация Я. т. — сложный и дорогостоящий процесс переработки высокорадиоактивных веществ, требующий защиты от радиоактивных излучений и дистанционного управления всеми операциями даже после длительной выдержки отработавших ТВЭЛов в специальных хранилищах. При этом в каждом аппарате ограничивается допустимое количество делящихся веществ, чтобы предупредить возникновение самопроизвольной цепной реакции. Большие трудности связаны с переработкой и захоронением радиоактивных отходов. Разрабатываются методы остекловывания и битумирования отходов, «закачка» слабоактивных растворов в глубокие горизонты Земли. Стоимость процессов регенерации Я. т. и переработки радиоактивных отходов оказывает существенное влияние на экономические показатели атомных электростанций .

  Лит.: Химическая технология облученного ядерного горючего, М., 1971; Паттон Ф. С., Гуджин Д. М., Гриффитс В. Л., Ядерное горючее па основе обогащенного урана, М., 1966; Высокотемпературное ядерное топливо, М., 1969; Займовский А. С., Калашников В. В., Головнин И. С., Тепловыделяющие элементы атомных реакторов, М., 1966.

  Ф. Г. Решетников, Д. И. Скороваров.

Рис. к ст. Ядерное топливо.

Рис. к ст. Ядерное топливо.

Ядерной физики ленинградский институт

Я'дерной фи'зики ленингра'дский институ'т им. Б. П. Константинова АН СССР (г. Гатчина Ленинградской области), научно-исследовательское учреждение, в котором ведутся исследования в области ядерной физики, физики частиц высоких энергий, физики твёрдого тела, а также радиобиологии и молекулярной биологии. Основан в 1971 под руководством Б. П. Константинова на базе ядерных лабораторий Физико-технического института АН СССР. В институте было проведено экспериментальное доказательство наличия слабого нуклон-нуклонного взаимодействия (совместно с сотрудниками Института теоретической и экспериментальной физики). Институт располагает исследовательским водо-водяным реактором ВВР-М мощностью 16 Мвт с потоком тепловых нейтронов до 3 ·1014 н ·см2 /сек , фазотроном на энергию 1 Гэв с током до 1 мка , а также системой автоматизированного управления экспериментами на базе ЭВМ.

Ядерно-плазменное отношение

Я'дерно-пла'зменное отноше'ние (биол.), отношение объёма ядра клетки к объёму её цитоплазмы. Показатель введён немецким учёным Р. Гертвигом (1908), который считал, что закономерное уменьшение Я.-п. о. — непосредственная причина вступления клетки в деление (эта гипотеза впоследствии не подтвердилась). Объём ядра обычно прямо пропорционален объёму цитоплазмы (в том числе и при полиплоидии ядра). Однако известны многочисленные нарушения этой пропорциональности, например в ходе развития яйцеклеток или при изменении функциональной активности клетки. В клетках разных тканей Я.-п. о. различно, что является одной из характеристик типа клеток.

Ядерные боеприпасы

Ядерные боеприпасы , боевые части ракет, торпед, авиационные (глубинные) бомбы, артиллерийские выстрелы, фугасы с ядерными зарядами. Предназначены для поражения различных целей, разрушения укреплений, сооружений и других задач. Действие Я. б. основано на использовании энергии, выделяющейся при взрыве ядерного заряда . Я. 6. состоит из ядерного заряда, системы подрыва и корпуса, предохраняющего ядерный заряд и систему подрыва от воздействия внешних факторов среды и оружия противника. Корпус обеспечивает также соединение Я. б. с носителем.

Ядерные модели

Я'дерные моде'ли , приближённые методы описания некоторых свойств ядер, основанные на отождествлении ядра с какой-либо другой физической системой, свойства которой либо хорошо изучены, либо поддаются сравнительно простому теоретическому анализу. Таковы, например, ядерные модели вырожденного ферми-газа , жидкой капли, ротатора (волчка), оболочечная модель и др. (см. Ядро атомное ).

Ядерные оболочки

Я'дерные оболо'чки . Согласно оболочечной модели ядер каждый нуклон в ядре находится в определённом квантовом состоянии, причём в каждом состоянии с данной энергией (энергетическом уровне) может находиться не более чем (2j + 1) нуклонов, образующих Я. о. (j — спин нуклона). Ядра, у которых нуклонные Я. о. целиком заполнены, называются магическими. Подробнее см. Ядро атомное , Магические ядра .

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*