KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ - Большая Советская энциклопедия (На)

БСЭ - Большая Советская энциклопедия (На)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ, "Большая Советская энциклопедия (На)" бесплатно, без регистрации.
Перейти на страницу:

  Лит.: Harper L., The English navigation laws, N. Y., 1939.

Навигационные сумерки

Навигацио'нные су'мерки, см. Сумерки .

Навигационный спутник

Навигацио'нный спу'тник, искусственный спутник Земли , предназначенный для обеспечения навигации судов и самолётов. С помощью навигационной радиотехнической аппаратуры в нескольких точках орбиты измеряются дальность и скорость Н. с. относительно судна (самолёта). Результаты этих измерений в сочетании с известными геоцентрическими координатами Н. с., определяемыми на моменты измерений по информации, хранящейся в запоминающем устройстве Н. с. и передаваемой по радио во время сеансов связи, позволяют определить положение судна, с которого проведены измерения. Для повышения точности навигационных расчётов используют систему из нескольких спутников, движущихся по разным орбитам, и сеть наземных станций, ведущих систематические измерения положений Н. с. для уточнения параметров их орбит. Ошибка определения положения судна по результатам наблюдений одного Н. с. составляет около 55 м .

  Лит.: Oakes J. В., The navy navigation satellite system and its applications, «Journal of the Washington Academy of Sciences», 1969, v. 59, № 1—3, p. 7—16.

  А. М. Микиша.

Навигация воздушная

Навига'ция возду'шная, аэронавигация, наука о методах и средствах вождения летательных аппаратов (ЛА) — самолётов, вертолётов, ракет и др.; совокупность операций по определению навигационных элементов наземными пунктами управления полётами или на борту ЛА и использованию их для вождения ЛА. Принципы Н. в. берут начало от возникшей в древние времена морской навигации , в частности у неё заимствован метод использования магнитного компаса, и мореходной астрономии .

  Н. в. обеспечивает вождение ЛА по траектории, определяемой маршрутом (трассой) и профилем полёта, с заданной программой, регламентирующей режим полёта ЛА от его взлёта с начального пункта маршрута и до посадки в конечном пункте в заданное время (см. Авиалиния ). Кроме того, Н. в. решает частные навигационные задачи — выдерживание заданных дистанций и интервалов времени между ЛА на трассах с интенсивным воздушным движением или при выходе с трассы к аэродрому посадки, предупреждение столкновения ЛА в полёте с наземными препятствиями (горой и др.), сближение двух ЛА в полёте (встреча с самолётом-танкером для дозаправки горючим и др.) и т.д. При выполнении полёта по заданным траектории (или маршруту) и программе задача Н. в., в отличие от пилотирования , сводится в основном к получению непрерывной или периодической информации о текущих навигационных элементах поступательного движения центра масс ЛА относительно системы координат, привязанной к земной поверхности.

  Для определения навигационных элементов (курса , сноса угла , путевого угла, воздушной и путевой скоростей, высоты, координат местонахождения ЛА и др.) применяются различные технические средства, которые в зависимости от первичного источника навигационной информации подразделяются на 4 основные группы: геотехнические, позволяющие определять относительную высоту полёта, магнитный курс, местонахождение ЛА измерением различных параметров геофизических полей Земли (магнитного, гравитационного и др.); к ним относятся высотомеры , измерители воздушной и путевой скоростей, магнитные компасы , и гиромагнитные компасы , гирополукомпасы, оптические визиры, инерциальные навигационные системы и т.д.; радиотехнические, позволяющие определять истинную высоту, путевую скорость, местонахождение ЛА измерением различных параметров электромагнитного поля по радиосигналам, излучаемым специальными передающими устройствами; к ним относятся радиовысотомеры , радиомаяки , радиокомпасы , радионавигационные системы и т.д.; астрономические, позволяющие определять курс и местонахождение ЛА; к ним относятся астрономические компасы , секстанты , астроориентаторы и т.д. (см. Авиационная астрономия ); светотехнические, предназначенные для обеспечения посадки ЛА в сложных метеорологических условиях и ночью, а также для облегчения ориентировки (светомаяки). Т. к. каждой группе технических средств навигации свойственны свои преимущества и недостатки, то для обеспечения точного полёта ЛА по заданному маршруту в любых условиях погоды навигационные средства, работающие на различных принципах, объединяются как датчики в единые комплексные системы. В таких системах с помощью аналоговых или цифровых вычислительных машин решаются основные навигационные задачи и записывается программа предстоящего полёта (координаты пунктов заданного маршрута, высоты и скорости пролёта над пунктами, координаты радионавигационных систем и др.). Комплексные навигационные системы, связанные с автопилотом , могут обеспечить автоматический полёт по всему маршруту и заход на посадку при отсутствии видимости земной поверхности. В общем случае применяемая комплексная навигационная система определяет местоположение ЛА по трём координатам: 2 координаты — проекции его центра масс на горизонтальную плоскость (долгота и широта), и одна — высота. Для ориентировки ЛА достаточно знать 2 координаты в горизонтальной плоскости. Маршрут полёта контролируется по линии пути, определяемой проекцией вектора путевой скорости. Последний находится как результат сложения измеряемых векторов воздушной скорости (скорости ЛА по отношению к воздуху) и скорости воздушного течения по отношению к земной поверхности. Высота полёта измеряется высотомером.

  Для определения текущих координат местоположения ЛА в полёте используются разные методы, сводящиеся к трём основным: 1) счисления пути , основанный на получении линий (поверхностей) положения ЛА дискретным или непрерывным суммированием во времени его измеряемой скорости или ускорения; 2) позиционны и (линий положения, или позиционных линий), которым непосредственно определяют линии (поверхности) положения ЛА без учёта пройденного им расстояния путём нахождения координат местоположения ЛА относительно известных наземных ориентиров или небесных светил; 3) обзорно-сравнительный (ориентировка), которым определяют местоположение ЛА либо путём сличения фактически наблюдаемой картины местности по опознанным наземным ориентирам (зрительным, радиолокационным, магнитным и др.) с географической картой или условной моделью местности, либо путём сличения участка небесного свода со звёздной картой. В зависимости от специфики вождения различных видов ЛА, их класса и назначения, районов их применения и характера маршрута комплексные системы Н. в. отличаются друг от друга по составу. Выбор технических средств Н. в. и её методов производится в соответствии с заранее разработанным штурманским планом.

  Требования по обеспечению максимально возможной безопасности воздушного движения в условиях возрастающей его интенсивности, увеличения числа и протяжённости воздушных авиалиний, дальнейшего возрастания скоростей полёта ЛА привели к созданию и внедрению автоматизированных комплексных систем Н. в. и управления воздушным движением.

  Лит.: Справочник авиационного штурмана, под ред. В. И. Соколова, М., 1957; Кирст М. А., Навигационная кибернетика полёта, М., 1971.

  М. М. Райчев.

Навигация (морск.)

Навига'ция (лат. navigatio, от navigo — плыву на судне),

  1) мореплавание, судоходство. 2) Период времени в году, когда по местным климатическим условиям возможно судоходство. 3) Основной раздел судовождения, в котором разрабатываются теоретические обоснования и практические приёмы вождения судов. (О вопросах воздушной Н. см. в ст. Навигация воздушная .)

  Начало морской Н. восходит к глубокой древности. Простейшие приёмы вождения судов были известны не только древним египтянам и финикийцам, но и народам, стоявшим на более низкой ступени развития. Основы современной Н. были заложены применением магнитной стрелки для определения курса судна , относимым к 11 в., составлением карт в прямой равноугольной цилиндрической проекции (Г. Меркатор , 1569), изобретением в 19 в. механического лага. В конце 19 — начале 20 вв. успехи в развитии физики послужили основой создания электронавигационных приборов и радиотехнических средств судовождения. В России первое учебное пособие по Н. было составлено в 1703 Л. Ф. Магницким — преподавателем Школы математических и навигацких наук, основанной Петром I в 1701. Большой вклад в разработку вопросов Н. внесли русские мореплаватели и учёные: С. И. Мордвинов, Л. Эйлер, М. В. Ломоносов и др. Кругосветные плавания и научные экспедиции, совершенные русскими моряками, способствовали дальнейшему развитию науки судовождения. Создаются учебники, в которых методы Н. получают трактовку, близкую к современной. В 1806 выходит учебник П. Я. Гамалеи «Теория и практика кораблевождения», выдержавший несколько изданий и служивший в 1-й половине 19 в. основным пособием по Н. Новый этап в развитии Н. и штурманского дела открыло изобретение радио А. С. Поповым . Большая заслуга в создании и развитии отечественной школы Н. принадлежит советским учёным: Н. Н. Матусевичу, Н. А. Сакеллари, А. П. Ющенко, К. С. Ухову и др.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*