KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (НЬ)

БСЭ БСЭ - Большая Советская Энциклопедия (НЬ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (НЬ)" бесплатно, без регистрации.
Перейти на страницу:

  В понятиях и терминологии метода флюксий с полной отчётливостью отразилась глубокая связь математических и механических исследований Н, Понятие непрерывной математической величины Н. вводит как абстракцию от различных видов непрерывного механического движения. Линии производятся движением точек, поверхности — движением линий, тела — поверхностей, углы — вращением сторон и т.д. Переменные величины Н. назвал флюентами (текущими величинами, от лат. fluo — теку). Общим аргументом текущих величин — флюент — является у Н. «абсолютное время», к которому отнесены прочие, зависимые переменные. Скорости изменения флюент Н. назвал флюксиями, а необходимые для вычисления флюксий бесконечно малые изменения флюент — «моментами» (у Лейбница они назывались дифференциалами). Таким образом, Н. положил в основу понятия флюксий (производной) и флюенты (первообразной, или неопределённого интеграла).

  В сочинении «Анализ при помощи уравнений с бесконечным числом членов» (1669, опубликовано 1711) Н. вычислил производную и интеграл любой степенной функции. Различные рациональные, дробно-рациональные, иррациональные и некоторые трансцендентные функции (логарифмическую, показательную, синус, косинус, арксинус) Н. выражал с помощью бесконечных степенных рядов. В этом же труде Н. изложил метод численного решения алгебраических уравнений (см. Ньютона метод), а также метод для нахождения разложения неявных функций в ряд по дробным степеням аргумента. Метод вычисления и изучения функций их приближением бесконечными рядами приобрёл огромное значение для всего анализа и его приложений.

  Наиболее полное изложение дифференциального и интегрального исчислений содержится в «Методе флюксий...» (1670—1671, опубл. 1736). Здесь Н. формулирует две основные взаимно-обратные задачи анализа: 1) определение скорости движения в данный момент времени по известному пути, или определение соотношения между флюксиями по данному соотношению между флюентами (задача дифференцирования), и 2) определение пройденного за данное время пути по известной скорости движения, или определение соотношения между флюентами по данному соотношению между флюксиями (задача интегрирования дифференциального уравнения и, в частности, отыскания первообразных). Метод флюксий применяется здесь к большому числу геометрических вопросов (задачи на касательные, кривизну, экстремумы, квадратуры, спрямления и др.); здесь же выражается в элементарных функциях ряд интегралов от функций, содержащих квадратный корень из квадратичного трёхчлена. Большое внимание уделено в «Методе флюксий» интегрированию обыкновенных дифференциальных уравнений, причём основную роль играет представление решения в виде бесконечного степенного ряда. Н. принадлежит также решение некоторых задач вариационного исчисления.

  Во введении к «Рассуждению о квадратуре кривых» (основной текст 1665—66, введение и окончательный вариант 1670, опубликован 1704) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения предела и рассматривая его как первоначальное. Учение Н. о пределе через ряд посредствующих звеньев (Ж. Л. Д'Аламбер, Л. Эйлер) получило глубокое развитие в математике 19 в. (О. Л. Коши и др.).

  В «Методе разностей» (опубликован 1711) Н. дал решение задачи о проведении через n + 1 данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка и предложил интерполяционную формулу, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (опубликована 1704) Н. приводится классификация этих кривых, сообщаются понятия диаметра и центра, указываются способы построения кривых 2-го и 3-го порядка по различным условиям. Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (опубликована в 1707 по лекциям, читанным в 70-е гг. 17 в.) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у Н. от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе.

  Созданная Н. теория движения небесных тел, основанная на законе всемирного тяготения, была признана крупнейшими английским учёными того времени и резко отрицательно встречена на европейском континенте. Противниками взглядов Н. (в частности, в вопросе о тяготении) были картезианцы (см. Картезианство), воззрения которых господствовали в Европе (в особенности во Франции) в 1-й половине 18 в. Убедительным доводом в пользу теории Н. явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Декарта. Исключительную роль в укреплении авторитета теории Н. сыграла работа А. К. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Н. в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанном на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс).

  Вопрос о природе тяготения во времена Н. сводился в сущности к проблеме взаимодействия, т. е. наличия или отсутствия материального посредника в явлении взаимного притяжения масс. Не признавая картезианских воззрений на природу тяготения, Н., однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После смерти Н. возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие высказывания Н.: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.

  Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии. Н. писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели. Влияние взглядов Н. на дальнейшее развитие физики огромно. «Ньютон заставил физику мыслить по-своему, “классически”, как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе» (Вавилов С. И., Исаак Ньютон, 1961, с. 194, 196).

  Материалистические естественнонаучные воззрения совмещались у Н. с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса. Однако Н. четко отделял науку от религии. «Ньютон оставил ему (богу) ещё “первый толчок”, но запретил всякое дальнейшее вмешательство в свою солнечную систему» (Ф. Энгельс, Диалектика природы, 1969, с. 171).

  На русский язык переведены все основные работы Н.; большая заслуга в этом принадлежит А. Н. Крылову и С. И. Вавилову.

Соч.: Opera quae extant omnia. Commentariis illustravit S. Horsley, v. 1—5, L., 1779—85; в рус. пер.— Математические начала натуральной философии, с примечаниями и пояснениями А. Н. Крылова, в кн.: Крылов А. Н., Собр. трудов, т. 7, М.—Л., 1936; Лекции по оптике, пер. С. И. Вавилова, [М.], 1946; Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света, пер. и примечания С. И, Вавилова, 2 изд., М., 1954; Математические работы, пер. с лат. Д. Д. Мордухай-Болтовского, М.—Л., 1937; Всеобщая арифметика или книга об арифметическом синтезе и анализе, пер. А. П. Юшкевича, М.—Л., 1948.

  Лит.: Вавилов С. И., Исаак Ньютон, М., 1961; Исаак Ньютон. 1643—1727. Сб. статей к трехсотлетию со дня рождения, под ред. С. И. Вавилова, М.—Л., 1943.

Зеркальный телескоп И. Ньютона, хранящийся в Лондонском королевском обществе.

Титульный лист первого издания «Начал».

Надгробный памятник И. Ньютону в Вестминстерском аббатстве в Лондоне.

И. Ньютон.

Ньютона бином

Нью'тона бино'м, название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых, а именно:

(1)

  (1) где n — целое положительное число, а и b — какие угодно числа.

  Частными случаями Н. б. при n = 2 и n = 3 являются известные формулы для квадрата и куба суммы а и b: (а + b)2 = а2 + 2ab + b2, (а + b)3 = а3 + 3a2b + 3ab2 + b3; при n = 4 получают (а + b)4 = a4+ 4a3b + 6a2b2 + 4ab3 + b4 и т.д.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*