БСЭ БСЭ - Большая Советская Энциклопедия (КИ)
В последнее время всё большее внимание биологов привлекают функциональные характеристики биологических систем управления, обусловленные периодическими (ритмическими, циклическими) процессами. Живые организмы с высокой точностью способны «измерять» время («биологические часы» ). Это выражается в периодических изменениях дыхания, температуры тела и др. процессов жизнедеятельности. Природа биологических ритмов ещё во многом неясна, но есть все основания полагать, что периодичность — фундаментальная характеристика функционирования биологической системы и процессов управления в ней. Процессы, происходящие на каждом из уровней живой системы, характеризуются своей специфической периодичностью, определяемой как внутренними, так и внешними факторами. А между периодической активностью отдельных уровней в нормально функционирующем организме существуют определенные фазовые сдвиги (сдвиги во времени), обусловленные специфической организацией управления на каждом из уровней. Нарушение этих нормальных фазовых сдвигов может вызвать нарушение работы всей живой системы или ее части. Это ведет к сбоям в работе системы управления и накоплению ошибок, что можно описывать как появление «шумов». Коррекция сбоев требует внутренней перенастройки системы (ее алгоритма) либо внешних управляющих воздействий за счёт включения механизмов управления более высокого уровня.
Живые существа объединяются в системы разного порядка (популяции , биоценозы и т.д.), образуя своеобразную иерархию живых систем. Во всех этих надорганизменных системах, как и в жизни клетки, развитии организма, эволюции органического мира в целом, имеются внутренние механизмы регуляции, для изучения которых также применимы принципы и методы К. б.
Механизмы управления определяют течение жизненных процессов не только в норме, но и в патологии (см. Кибернетика медицинская ). Клетка — сложная саморегулирующаяся система. Она обладает многими регуляторными механизмами, одним из которых являются колебания её структуры, связанные с деятельностью митохондрии и совпадающие с колебаниями окислительно-восстановительных процессов. Синтез белков в клетке управляется генетически детерминированными механизмами, связанными с процессами хранения, переработки и передачи генетической информации . Изучение жизнедеятельности организма в целом и его разных функций, а также механизмов, управляющих работой отдельных органов и систем — это та область, где К. б. оказалась наиболее результативной. В связи с этим сформировались самостоятельные направления — физиологическая кибернетика и нейрокибернетика, изучающие механизмы поддержания гомеостаза ; принципы саморегуляции функций организма и протекания в нем переходных процессов; закономерности нервной и гуморальной регуляции в их единстве и взаимодействии; принципы организации и функционирования нейронов и нервных сетей; механизмы осуществления актов поведения и др. проблемы. Изучая закономерности работы человеческого мозга, в основе которой лежит комплекс алгоритмов, т. е. правил преобразования информации, К. б. позволяет моделировать (в том числе и на ЭВМ) различные формы работы мозга, выявляя при этом новые закономерности его деятельности. Созданы, например, программы для ЭВМ, обеспечивающие возможность обучения, игры в шахматы, доказательства теорем и др. Развивается так называемое эвристическое программирование, когда исследуют и моделируют правила обработки информации в мозге при тех или иных творческих процессах.
Анализ механизмов индивидуального развития и процессов управления в популяциях и сообществах, включающих хранение, переработку и передачу информации от особи к особи, — также сфера исследований К. б. На уровне биогеоценозов, включая и биосферу в целом, К. б. пытается использовать метод моделирования для целей оптимизации биосферы, в частности для определения путей наиболее рационального вмешательства человека в жизнь природы.
Вопросы эволюции с позиций К. б. были впервые рассмотрены И. И. Шмальгаузеном, который отметил иерархичность управления, выделил основные каналы связи между особями, популяцией и биоценозом, определил возможности потери информации и ее искажений и описал эволюционный процесс в терминах теории информации. С этих же позиций исследуются механизмы различных форм отбора.
Примером применения К. б. в прикладных целях может служить создание устройств для автоматического управления биологическими функциями (так называемое биопротезирование), автоматических устройств для оценки состояния человека во время трудовой или спортивной деятельности, при творческой работе, в субэкстремальных и экстремальных условиях.
Использование методов и средств кибернетики для сбора хранения и переработки информации получаемой в ходе биологических исследований позволяет вскрывать новые количественные и качественные закономерности изучаемых процессов и явлений.
Большую роль в деле развития К. б. в СССР сыграли конференции совещания и симпозиумы по биологическим аспектам кибернетики по биоэлектрическому управлению, нейрокибернетике. Вопросы К. б. освещаются в ряде советских и зарубежных журналов.
Лит.: Анохин П. К., Физиология и кибернетика, в кн.: Философские вопросы кибернетики, М., 1961; Биологические аспекты кибернетики. Сб. работ, М., 1962; Эшби У. Р., Конструкция мозга, пер. с англ., М., 1962; Джордж Ф., Мозг как вычислительная машина, пер. с англ., М., 1963; Винер Н., Кибернетика, или Управление и связь в животном и машине, пер. с англ., М.,1968; Бернштейн Н. А., Очерки по физиологии движений и физиологии активности, М., 1966; Анохин П. К. [и др.], Биологическая и медицинская кибернетика, в кн.: Кибернетику — на службу коммунизму, т.5, М., 1967; Брайнес C. Н., Свечинский В. Б., Проблемы нейрокибернетики и нейробионики, М., 1968; Шмальгаузен И. И., Кибернетические вопросы биологии, Новосибирск, 1968; Ларин В. В., Баевский Р. М., Геллер Е. С., Процессы управления в живом организме, в кн.: Философские вопросы биокибернетики, М., 1969; Аптер М., Кибернетика и развитие, пер. с англ., М., 1970; Hassenstein B., Biologische Kybernetik, Hdlb., 1970.
В. В. Парин, Е. С. Геллер.
Кибернетика медицинская
Киберне'тика медици'нская, научное направление, связанное с проникновением идей, методов и технических средств кибернетики в медицину. Развитие идей и методов кибернетики в медицине осуществляется в основном в направлениях создания диагностических систем для различных классов заболеваний с использованием универсальных или специализированных ЭВМ; создания автоматизированного электронного медицинского архива; разработки математических методов анализа данных обследования больного; разработки метода математического моделирования на ЭВМ деятельности различных функциональных систем; использования математических машин для оценки состояния больного. Об истории развития и теоретических основах К. м. подробнее см. Кибернетика биологическая .
Внутренняя организация диагностической системы состоит из медицинской памяти (аккумулированный медицинский опыт в данной группе заболеваний) и логического устройства, позволяющего сопоставить с существующим медицинским опытом симптомы, выявленные при обследовании больного, а также быстро произвести сложную статистическую обработку клинического материала в любом заданном направлении.
Метод математического моделирования на ЭВМ деятельности разных функциональных систем организма позволяет раскрыть многие важные стороны их деятельности. Для выявления ряда закономерностей взаимодействия изучаемых систем по соответствующим параметрам, характеризующим функцию той или иной системы организма (например, сердечно-сосудистой), составляют математические уравнения. Решение этих уравнений позволяет судить о закономерностях исследуемой системы.
Математические машины используются для быстрой оценки состояния больного во время большой и сложной операции и в послеоперационный период. При таких операциях контроль за состоянием важнейших функций оперируемого осуществляют при помощи различных электронных приборов и аппаратов многие специалисты (физиолог, биохимик, гематолог и др.). Усилия врачей и математиков, работающих в области К. м., направлены на создание кибернетической системы, позволяющей в течение нескольких секунд оценить, сопоставить и интегрировать показания многочисленных приборов и указать правильное решение о принятии необходимых мер для восстановления жизненно важных функций больного.
Дальнейшее развитие К. м. направлено на разработку средств, существенно помогающих врачу и увеличивающих его логические и творческие возможности.