БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)
М. Г. Ярошевский.
Динамическая система
Динами'ческая систе'ма (в классическом смысле), механическая система с конечным числом степеней свободы, например система конечного числа материальных точек или твёрдых тел, движущаяся по законам классической динамики. Состояние такой системы обычно характеризуется её расположением (конфигурацией) и скоростью изменения последнего, а закон движения указывает, с какой скоростью изменяется состояние системы.
В простейших случаях состояние можно охарактеризовать посредством величин w1, ..., wm, которые могут принимать произвольные (вещественные) значения, причём двум различным наборам величин w1, ..., wm и w'1, ..., w'm отвечают различные состояния, и обратно, а близость всех wi к wi' означает близость соответствующих состояний системы. Закон движения тогда записывается в виде системы обыкновенных дифференциальных уравнений:
wi = fi(w1, ..., wm), i = 1, ..., m. (1)
Рассматривая значения w1, ..., wm как координаты точки w в m-мерном пространстве, можно геометрически представить соответствующее состояние Д. с. посредством точки w. Эту точку называют фазовой (иногда также изображающей, или представляющей) точкой, а пространство — фазовым пространством системы (прилагательное «фазовый» связано с тем, что в прошлом состояния системы нередко называются её фазами). Изменение состояния со временем изображается как движение фазовой точки по некоторой линии (так называемой фазовой траектории; часто её называют просто траекторией) в фазовом пространстве. В последнем определено векторное поле, сопоставляющее каждой точке w выходящий из неё вектор f(w) с компонентами
(f1(w1, ..., wm), ..., fm(w1, ..., wm))
Дифференциальные уравнения (1), которые с помощью введённых обозначений можно сокращённо записать в виде
w = f(w), (2)
означают, что в каждый момент времени векторная скорость движения фазовой точки равна вектору f(w), исходящему из той точки w фазового пространства, где в данный момент находится движущаяся фазовая точка. В этом состоит так называемая кинематическая интерпретация системы дифференциальных уравнений (1).
Например, состояние частицы без внутренних степеней свободы (материальной точки), движущейся в потенциальном поле с потенциалом U(x1, x2, x3), характеризуется её положением x = (x1, x2, x3) и скоростью x; вместо скорости можно использовать импульс p = mx, где m — масса частицы. Закон движения частицы можно записать в виде
Формулы (3) представляют собой сокращённую запись системы шести обыкновенных дифференциальных уравнений 1-го порядка. Фазовым пространством здесь служит 6-мерное евклидово пространство, 6 компонент вектора фазовой скорости суть компоненты обычной скорости и силы, а проекция фазовой траектории на пространство положений частицы (параллельно пространству импульсов) есть траектория частицы в обычном смысле слова.
Термин «Д. с.» применяется и в более широком смысле, означая произвольную физическую систему (например, систему автоматического регулирования, радиотехническую систему), описываемую дифференциальными уравнениями вида (1) или (2), и даже просто систему дифференциальных уравнений такого вида, безотносительно к её происхождению. См. также ст. Эргодическая теория.
Лит.: Немыцкий В. В. и Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М. — Л., 1949; Коддингтон Э. А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, пер. с англ., М., 1958, гл. 13—17; Халмош П. P., Лекции по эргодической теории, пер. с англ., М., 1959; Лефшец С., Геометрическая теория дифференциальных уравнений, пер. с англ., М., 1961.
Д. В. Аносов.
Динамические межотраслевые модели
Динами'ческие межотраслевы'е моде'ли, экономико-математические модели плановых расчётов, позволяющие определять по годам перспективного периода объёмы производства продукции, капитальных вложений (а также ввода в действие основных фондов и производственных мощностей) по отраслям материального производства в их взаимной связи. В Д. м. м. на каждый год планового периода задаются объёмы и структура «чистого» конечного продукта (личного и общественного потребления, накопления оборотных фондов и государственных резервов, экспортно-импортного сальдо, капитальных вложений, не связанных с увеличением производства в рассматриваемом периоде), а также объём и структура основных фондов на начало периода. В Д. м. м., помимо коэффициента прямых затрат, присущих статическим межотраслевым моделям, вводят специальные коэффициенты, характеризующие материально-вещественную структуру капитальных вложений.
По типу используемого математического аппарата Д. м. м. делятся на балансовые и оптимальные. Балансовые Д. м. м. могут быть представлены как в форме системы линейных уравнений, так и в форме линейных дифференциальных или разностных уравнений. Балансовые Д. м. м. различают также по лагу (разрыв во времени между началом строительства и пуском в эксплуатацию построенного объекта). Для оптимальных Д. м. м. характерны наличие определённого критерия оптимальности, замена системы линейных уравнений системой неравенств, введение специальных ограничений по трудовым и природным ресурсам (подробнее см. Баланс межотраслевой).
Э. Ф. Баранов.
Динамический стереотип
Динами'ческий стереоти'п, физиологическое понятие, обозначающее относительно устойчивую систему реакции организма на воздействие внешней среды; см. Стереотип динамический.
Динамический фактор
Динами'ческий фа'ктор автомобиля, является показателем его тягово-скоростных качеств и определяется по формуле:
где Pk — тяговая сила на ведущих колёсах автомобиля; Pb — сила сопротивления воздуха движению автомобиля; VPa — сила тяжести автомобиля. Д. ф., выражающийся обычно в %, характеризует возможность автомобиля развивать максимальную скорость, преодолевая сопротивление качению и подъёму, буксировать прицеп (полуприцеп) и разгоняться.
Динамическое программирование
Динами'ческое программи'рование, раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.
В Д. п. для управляемых процессов среди всех возможных управлений ищется то, которое доставляет экстремальное (наименьшее или наибольшее) значение целевой функции — некоторой числовой характеристике процесса. Под многошаговостью понимают либо многоступенчатую структуру процесса, либо разбиение управления на ряд последовательных этапов (шагов), соответствующих, как правило, различным моментам времени. Т. о., в названии «Д. п.» под «программированием» понимают «принятие решений», «планирование», а слово «динамическое» указывает на существенную роль времени и порядка выполнения операции в рассматриваемых процессах и методах.
Методы Д. п. являются составной частью методов, используемых в исследовании операций (см. Операций исследование), и применяются как в задачах оптимального планирования, так и при решении различных технических проблем (например, в задачах определения оптимальных размеров ступеней многоступенчатых ракет, в задачах оптимального проектирования прокладки дорог и др.).
Пусть, например, процесс управления некоторой системой состоит из m шагов (этапов), на i-м шагу управление yi переводит систему из состояния xi-1 в новое состояние xi, которое зависит от xi-1 и yi:
xi = xi(yi, xi-1).
Т. о., управление у1, у2, ..., уm переводит систему из начального состояния x0 в конечное хm. Требуется выбрать x0 и у1, ..., уm таким образом, чтобы целевая функция F = åmi=1 ji (xi-1, yi) достигла максимального значения F*. Основным методом Д. п. является сведение общей задачи к ряду более простых экстремальных задач. Пользуясь так называемым принципом оптимальности, сформулированным американским математиком Р. Беллманом, легко получить основное функциональное уравнение: