БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)
Ламия
Лами'я (Lamia), город в Центральной Греции, близ залива Малиакос Эгейского моря. Административный центр нома Фтиотида. 37,8 тыс. жителей (1971). Переработка табака и хлопка; производство ковров. Л. основан в 5 в. до н. э.
Ламменс Анри
Ламме'нс (Lammens) Анри (1.7.1862, Гент, — 23.4.1937, Бейрут), историк-арабист и исламовед. По происхождению бельгиец. Католический миссионер-иезуит. Профессор университета св. Иосифа в Бейруте (1882—1907, 1920—37) и Папского библейского института в Риме (1908—12). Автор работ по истории раннего ислама, истории, географии и этнографии Древней Аравии и Сирии, арабской литературе 7—8 вв., а также по новой истории Сирии и Ливана.
Лит.: Le Pére Н. Lammens, «Mélanges de l'Université Saint-Yoseph», Beyrouth, v. 21, fasc. 2, 1937/38 (имеется полная библ. тр. Л.); Salibi К. S., Islam and Syria in the writings of Henry Lammens, в кн.: Historians of the Middle East, L., 1962, p. 330—42.
Ламмерт Билль
Ла'ммерт (Lammert) Билль (5.1.1892, Хаген, ныне в ФРГ, — 30.10.1957, Берлин), немецкий скульптор (ГДР). Учился в 1911—13 в Гамбурге и Париже. В 1932 вступил в компартию Германии. Работал в Эссене (с 1922), Париже (1933), СССР (1934—51). Берлине. Член Германской академии искусств (1952), лауреат Национальной премии (1959). Мастер портретной и мемориальной скульптуры («Карл Либкнехт», бронза, 1953, Национальная галерея, Берлин; памятник жертвам фашизма в Равенсбрюке, бронза, 1956—59), отличающейся эмоциональностью и экспрессией сильно и четко вылепленных форм.
Лит.: Will Lammert, Dresden, 1963.
В. Ламмерт. Эскиз фигуры для памятника жертвам фашизма в Равенсбрюке. Глина. 1957.
Лампа бегущей волны
Ла'мпа бегу'щей волны' (ЛБВ), лампа с бегущей волной, электровакуумный прибор, в котором для усиления электромагнитных колебаний СВЧ используется длительное взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении. Основное назначение Л. б. в. — усиление колебаний СВЧ (300 Мгц — 300 Ггц) в приёмных и передающих устройствах. Л. б. в. используются также для преобразования и умножения частоты и др. целей. Электровакуумный прибор, работа которого основана на взаимодействии электронного потока и бегущей волны, впервые предложил и запатентовал американский инженер А. Гаев (A. Hoeff) в 1936. Первую Л. б. в. создал американский учёный Р. Компфнер (R. Kompfner) в 1943. Первые теоретические работы по Л. б. в. опубликовал американский физик Дж. Пирс (J. Pierce) в 1947.
Основными частями Л. б. в. (рис.) являются: электронная пушка для создания и формирования электронного потока; замедляющая система, снижающая скорость бегущей волны вдоль оси Л. б. в. до скорости, близкой к скорости электронов, для синхронного движения волны с электронным потоком (обычно используется металлическая спираль, жестко закрепленная продольными диэлектрическими опорами и отличающаяся слабой зависимостью скорости бегущей вдоль неё волны от частоты, благодаря чему достигается эффективное взаимодействие волны с электронным потоком в широкой полосе частот); фокусирующая система (периодическая система постоянных магнитов, соленоид или др.) для удержания магнитным полем электронного потока в заданных границах поперечного сечения по всей его длине; коллектор для улавливания электронов; ввод и вывод энергии электромагнитных колебаний; поглотитель энергии колебаний СВЧ на небольшом участке замедляющей системы для устранения самовозбуждения Л. б. в. из-за отражений волн от концов замедляющей системы.
Механизм взаимодействия электронного потока с электромагнитной волной можно объяснить следующим образом. Электроны, синхронно двигаясь вместе с волной, под воздействием ускоряющих (положительная полуволна) и тормозящих (отрицательная полуволна) участков её электрического поля группируются в сгустки. Последние располагаются в тех местах поля, где ускоряющая электроны полуволна переходит в тормозящую. В случае равенства скоростей волны и электронов обмена энергией между ними нет, усиление отсутствует. Если скорость электронов немного превышает скорость волны, сгустки электронов, обгоняя волну, входят в тормозящие участки поля и под их действием тормозятся. Кинетическая энергия, потерянная электронами при торможении, переходит в энергию бегущей волны.
Л. б. в. широкополосны: полоса пропускания частот у многих типов Л. б. в. превышает октаву. В зависимости от назначения Л. б. в. выпускаются на выходные мощности от долей мвт (входные маломощные и малошумящие Л. б. в. в усилителях СВЧ) до десятков квт (выходные мощные Л. б. в. в передающих устройствах СВЧ) в непрерывном режиме и до нескольких Мвт в импульсном режиме работы. Л. б. в. дают большое усиление — обычно от 30 до 60 дб. Кпд Л. б. в. средней и большой мощности невысок — около 30%. Для входных каскадов усиления в широкой полосе частот выпускаются Л. б. в. с выходной мощностью от 10-4 до 10 вт и низким коэффициентом шума (от 3 до 20 дб). Наряду с рассмотренными Л. б. в. применяются Л. б. в. типа М. О механизме работы последних см. в ст. Магнетронного типа приборы.
Лит.: Пирс Дж. P., Лампа с бегущей волной, пер. с англ., М., 1952; Коваленко В. Ф., Введение в электронику сверхвысоких частот, 2 изд., М., 1955; Сретенский В. Н., Основы применения электронных приборов сверхвысоких частот, М., 1963; Жуков Б. С., Перегонов С. А., Лампы бегущей волны, М., 1967.
Е. Н. Смирнов.
Схематическое изображение лампы бегущей волны: 1 — электронная пушка; 2 — замедляющая система; 3 — фокусирующая система соленоидного типа; 4 — коллектор; 5 — вывод энергии; 6 — поглотитель энергии колебаний СВЧ; 7 — ввод энергии.
Лампа дневного света
Ла'мпа дневно'го све'та, одна из разновидностей люминесцентных ламп с голубоватым цветом свечения. В СССР выпускаются 2 типа таких ламп — ЛДЦ (дневного света, с правильной цветопередачей) и ЛД (дневного света). Лампы ЛД не обеспечивают правильной передачи цвета освещаемых объектов; используются для целей общего освещения, особенно в южных районах (из-за холодного цвета их свечения). Лампы ЛДЦ служат для освещения объектов, для которых важно точное воспроизведение цветовых оттенков, преимущественно в синей и голубой областях спектра (лампы де-люкс и супер-де-люкс). Их световая отдача на 10—15% ниже, чем у ламп ЛД. Такие лампы применяют для освещения производственных помещений. Л. д. с. часто неправильно называют все виды люминесцентных ламп.
Лампа накаливания
Ла'мпа нака'ливания электрическая, источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника. Впервые световую энергию таким способом получил русский учёный А. Н. Лодыгин в 1872, пропуская электрический ток через угольный стержень, помещенный в замкнутый сосуд, из которого был откачан воздух. В 1879 американский изобретатель Т. А. Эдисон создал удобную для промышленного изготовления, достаточно долговечную конструкцию Л. н. с угольной нитью. В 1898—1908 в качестве тела накала испытывались металлы (Os, Та, W), и с 1909 стали применяться Л. н. с зигзагообразно расположенной вольфрамовой нитью. В 1912—13 появились Л. н., наполненные азотом и инертными газами (Ar, Kr); вольфрамовую нить стали изготовлять в виде спирали. Дальнейшее совершенствование Л. и. велось в направлении улучшения световой отдачи путём повышения температуры тела накала при сохранении срока службы лампы. Заполнение Л. н. высокомолекулярными инертными газами с добавками галогенов (см. Иодная лампа) позволило уменьшить загрязнение колбы лампы частицами распылившегося вольфрама и снизило скорость его испарения. Использование тела накала в форме биспирали (спирали, навитой из спирали) и триспирали сократило потери тепла через газ.
Все многочисленные разновидности Л. н. состоят из однотипных частей, различающихся размерами и формой. Устройство типичной Л. н. показано на рис. 1. Внутри колбы на стеклянном или металлическом штенгеле с помощью держателей из молибденовой проволоки закреплено тело накала (спираль из вольфрама). Концы спирали прикреплены к концам вводов; средняя часть вводов с целью создания вакуумноплотното соединения со стеклянной лопаткой выполняется из платинита или молибдена. В процессе вакуумной обработки колба лампы наполняется инертным газом, после чего штенгель заваривается с образованием носика. Для защиты носика, а также для крепления в патроне лампа снабжается цоколем, прикрепляемым к колбе цоколёвочной мастикой.
Л. н. классифицируют по областям применения (осветительные общего назначения, для фар и др.), по основной конструктивной форме и светотехническим свойствам колбы (зеркальные лампы, декоративные, с рассеивающим покрытием и др.), по форме тела накала (лампы с плоской спиралью, биспиралью и др.). По габаритным размерам различают сверхминиатюрные, миниатюрные, малогабаритные, нормальные и крупногабаритные Л. н.; например, к сверхминиатюрным лампам относятся Л. н. с длиной < 10 мм и диаметром <6 мм, у крупногабаритных ламп длина > 175 мм, а диаметр >80 мм.