БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)
5) Движения атомных частиц в Т. т. весьма разнообразны и проявляются в различных свойствах Т. т. Все движения можно разбить на 3 типа: а) диффузия собственных или чужеродных атомов. Элементарный акт диффузии — флуктуационное перемещение атома из занятого им положения в соседнее — свободное. Как правило, время «оседлой» жизни атома значительно больше, чем время перемещения — атом совершает редкие случайные скачки, вероятность которых возрастает с ростом температуры. Диффузионное перемещение — сравнительно редкий пример классического движения атомов в Т. т. б) Коллективные движения частиц, простейший пример которых — колебания кристаллической решётки. Энергия колеблющихся атомов приближённо равна сумме энергий отд. колебаний. При высоких температурах средняя энергия каждого колебания ~ kT, при низких температурах она определяется формулой Планка £ кТ. Хотя в колебаниях решётки принимают участие все атомы Т. т., они атомного масштаба (напомним: средняя энергия поступательного движения частицы в классическом газе равна kT). Др. пример: электронное возбуждение атома, не локализуемое на определённом узле кристаллической решётки, а передающееся от узла к узлу. Энергия такого движения (оно может быть возбуждено при поглощении кванта света или при повышении температуры) порядка энергии возбуждения отдельного атома. Коллективные движения атомного масштаба имеют дискретную структуру. Например, энергия колебания атомов с частотой со может быть равна , 2, 3 и т. д. Это позволяет каждому движению сопоставить квазичастицу. Квазичастицы, описывающие колебания атомов, называются фононами. в) При низких температурах (вблизи Т = 0) К) атомные частицы в некоторых Т. т. (и в жидком Не) могут совершать движение, квантовое по своей природе, но макроскопическое по масштабу. Наиболее изучено движение электронов в сверхпроводниках и атомов в сверхтекучем гелии. Характерная черта сверхпроводящего и сверхтекучего движения — строгая согласованность в поведении частиц, обусловленная взаимодействием между ними. Для «выхода из коллектива» частица должна преодолеть некоторую энергию (энергетическая щель). Существование энергетической щели делает сверхпроводящее и сверхтекучее движение устойчивым (незатухающим) (см. Сверхтекучесть, Сверхпроводимость).
6) Знание атомной структуры Т. т. и характера движения частиц в Т. т. (энергетический спектр) позволяет установить, какие квазичастицы ответственны за то или др. явление или свойство. Например, высокая электропроводность металлов обусловлена электронами проводимости, а теплопроводность — электронами проводимости и фононами; некоторые особенности поглощения света в диэлектриках — экситонами; ферромагнитный резонанс — магнонами и т. д. Отличие количеств. характеристик различных движений позволяет отделить одно движение от другого. Например, из-за большого различия в массах скорость движения ионов в металлах и полупроводниках очень мала по сравнению со скоростью электронов. Поэтому в некотором приближении (называемом адиабатическим), рассматривая движение электронов, ионы можно считать неподвижными, а движение ионов определять усреднёнными (по быстрому движению) характеристиками электронов. Часто независимость различных типов движения Т. т. обусловлена малой энергией взаимодействия между степенями свободы различной природы. Например, в ферромагнетике колебания атомов и спиновые волны имеют энергию и скорость приблизительно одного масштаба, но связь между ними мала, потому что малы магнитострикционные силы (см. Магнитострикция). Однако в некоторых случаях имеет место резонансное взаимодействие между разнородными волновыми процессами, когда их частоты и длины волн совпадают. Это приводит к «перепутыванию» движений; например, колебание атомов (звук) можно возбудить переменным магнитным полем, а звуковая волна может самопроизвольно превратиться в спиновую.
7) Все Т. т. при достаточном повышении температуры плавятся (или возгоняются). Подводимая к телу в процессе плавления теплота тратится на разрыв межатомных связей. температура плавления Тпл, характеризующая силу связи атомных частиц в Т. т., различна: у молекулярного водорода Тпл = -259,1 °С, у вольфрама 3410 ± 20 °С, а у графита более 4000 °С. Исключение составляет твёрдый 3Не, который плавится под давлением при понижении температуры (см. Померанчука эффект). При изменении внешних условий (давления, температуры, магнитного поля и т. д.) в Т. т. происходят скачкообразные изменения структуры и свойств — фазовые переходы 1-го и 2-го рода. Наличие у Т. т. различных устойчивых кристаллических структур (модификаций) называется полиморфизмом (например, графит и алмаз, белое и серое олово). Переход из одной модификации в другую иногда происходит как фазовый переход 1-го рода, а иногда как переход 2-го рода. Примерами фазового перехода 2-го рода служат переход веществ из парамагнитного состояния в ферро- или антиферромагнитное, переход в сверхпроводящее состояние из нормального при отсутствии магнитного поля, упорядочение ряда сплавов, возникновение сегнетоэлектрических свойств у некоторых диэлектриков и др.
8) В большинстве случаев при определённой температуре все степени свободы атомных частиц в Т. т. можно разделить на 2 категории. Для одних kT велико по сравнению с характерной энергией их взаимодействия Uвз, для др. степеней свободы kT мало по сравнению с Uвз. Степени свободы, для которых kT ³ Uвз, могут быть описаны в терминах «газа частиц» (например, «газ магнитных стрелок» при Т ³ Тс); степени свободы, для которых kT £ Uвз, находятся на низком уровне возбуждения, благодаря чему соответствующие им движения могут быть описаны путём введения квазичастиц, слабо взаимодействующих друг с другом. Т. о., в большинстве случаев свойства Т. т. могут быть «сведены» к свойствам газов — либо частиц, либо квазичастиц. Сильное взаимодействие при этом не «выпадает», оно определяет структуру Т. т. (например, его кристаллической решётки) и свойства отдельной квазичастицы. Квазичастицы существуют не в свободном пространстве (как частицы в реальных газах), а в кристаллической решётке, структура которой отражается в свойствах квазичастиц. Вблизи точек фазового перехода 2-го рода такое «сведёние» невозможно, так как движение атомных частиц Т. т. в этих условиях скоррелировано (на «языке» квазичастиц это (означает, что нельзя пренебречь их взаимодействием). Корреляция носит особый (не силовой) характер: вероятность коллективных движений частиц и квазичастиц столь же велика, сколь и их индивидуальных движений. Возрастание роли корреляции в движении частиц приводит к наблюдаемым эффектам: возрастают теплоёмкость, магнитная восприимчивость и т. п. Вблизи фазового перехода 2-го рода Т. т. ведёт себя как система т сильно взаимодействующих частиц (или квазичастиц), принципиально не сводимая к газу. Вблизи фазового перехода 2-го рода Т. т. может служить моделью значительно более сложных систем (например, ядерной материи, элементарных частиц в процессе их взаимодействия).
Знание атомно-молекулярной структуры Т. т., характера движения составляющих его частиц объясняет наблюдаемые явления и позволяет предсказывать ещё не открытые свойства Т. т., а также целенаправленно изменять структуру Т. т. и синтезировать Т. т. с уникальным, набором свойств.
Физика Т. т. разделилась на ряд областей, обособление которых происходит путём выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и др.), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия Т. т. и т. п.), либо определённых свойств Т. т. (механических, тепловых и т. д.). Возможность обособления — следствие относительной независимости атомных движений в Т. т.
Атомно-кристаллическая структура Т. т. зависит от сил, действующих между атомными частицами. Изменяя среднее расстояние между атомами с помощью внешнего давления, можно существенно изменить вклад межатомных сил различной природы и благодаря этому — кристаллическую структуру Т. т. Обнаружено большое число различных существующих при больших давлениях кристаллических модификаций, многие из которых отличаются по физическим свойствам. Например, Bi под давлением образует 3 сверхпроводящие модификации: при 25 300 атм < р < 27 000 атм Bi llI (Tc = 3,93 К); при 27 000 атм < р < 80 000 атм Bi III (Tc = 6,9 К); при 80 000 атм < р Bi IV (Tc = 7 К). Многие полупроводники под давлением переходят в металлическое состояние (Ge при р » 120 000 атм становится металлом), a Yb (металл) под давлением превращается в полупроводник. Есть основания считать, что молекулярный водород под давлением в 2—3 106 атм превращается в металл. При чрезвычайно большом давлении (или плотности), когда объём, приходящийся на один атом, становится меньше обычного атомного размера, атомы теряют свою индивидуальность и вещество превращается в сильно сжатую электронноядерную плазму. Исследование такого состояния вещества важно, в частности, для понимания структуры звёзд.